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Bounds for the weighted Dragomir–Fedotov
functional

Mohammad W. Alomaria

Abstract. In literature the Dragomir-Fedotov functional is well known as

D (f ;u) :=

∫ b

a

f (x) du (x)− u (b)− u (a)

b− a

∫ b

a

f (t) dt.

In this work a generalization of D (f ;u) is established. Namely, we define the weighted Dragomir–
Fedotov functional such as:

OD (f, g;u) :=
1

u (b)− u (a)
·
∫ b

a

f (x) du (x)− 1∫ b

a
g (t) dt

·
∫ b

a

f (t) g (t) dt,

and hence several bounds are proved.
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1. Introduction

In order to approximate the Stieltjes integral
∫ b

a
f (x) du (x) by the Riemann integral∫ b

a
f (t) dt, Dragomir and Fedotov [13], have established the following functional:

D (f ;u) :=

∫ b

a

f (x) du (x)− u (b)− u (a)

b− a

∫ b

a

f (t) dt, (1)

provided that the Stieltjes integral
∫ b

a
f (x) du (x) and the Riemann integral

∫ b

a
f (t) dt

exist.
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In the same paper [13], the authors have proved the following inequality:

Theorem 1.1. Let f, u : [a, b]→ R be such that u is of bounded variation on [a, b] and
f is Lipschitzian with the constant K > 0. Then we have

|D (f ;u)| ≤ 1

2
K (b− a)

b∨
a

(u) . (2)

The constant 1
2
is sharp in the sense that it cannot be replaced by a smaller quantity.

In his interesting work [15], Dragomir has obtained the following inequality:

Theorem 1.2. Let f, u : [a, b]→ R be such that u is Lipschitzian on [a, b], i.e.,

|u (y)− u (x)| ≤ L |x− y| , ∀x, y ∈ [a, b], (L > 0)

and f is Riemann integrable on [a, b].
If m,M ∈ R, are such that m ≤ f(x) ≤M , for any x ∈ [a, b], then the inequality

|D (f ;u)| ≤ 1

2
L (M −m) (b− a) . (3)

The constant 1
2
is sharp in the sense that it cannot be replaced by a smaller quantity.

For other recent inequalities of Gruss type, see [2]–[6], [9]–[16] and [18] and the ref-
erences therein.

1.1. A weighted Dragomir functional. In order to compare the Stieltjes integral
mean with the weighted Riemann integral mean, we define the functional OD (f, g;u),
as follows:

OD (f, g;u) :=
1

u (b)− u (a)
·
∫ b

a

f (x) du (x)− 1∫ b

a
g (t) dt

·
∫ b

a

f (t) g (t) dt, (4)

provided that the both integrals exist and g(t) 6= 0, for all t ∈ [a, b].

In particular, as special cases; we are interested in two functionals:

1: The Dragomir-Fedotov functional:

D (f ;u) :=

∫ b

a

f (x) du (x)− u (b)− u (a)

b− a

∫ b

a

f (t) dt

= [u (b)− u (a)] · OD (f, 1;u) . (5)

2: The weighted integral functional:

E (f, g;w) :=

∫ b

a
f (t)w (t) dt∫ b

a
w (t) dt

−
∫ b

a
f (t) g (t) dt∫ b

a
g (t) dt

=
1∫ b

a
w (t) dt

∫ b

a
g (t) dt

· OD
(
f, g;

∫ x

a

w (s) ds

)
, (6)
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where, u(x) =
∫ x

a
w (s) ds, w : [a, b]→ R is continuous on [a, b], and g (t) , w (t) 6=

0, for all t ∈ [a, b]. For more works about this type of integral functional the
reader may refer to [1], [7, 8] and [17].

In fact, the functional OD (f, g;u) is a natural generalization of Dragomir functional
D (f ;u); so that in this paper, several new bounds with various type of integrators for
the functional OD (f, g;u) are proved. More specifically, the obtained results deal with
integrands of r-H–Hölder type, and integrators of bounded variation, Lipschitzian and
monotonic types. Through the assumptions for the functions involved in the functionals
(5) and (6) several bounds may be obtained by a direct substitution and we shall omit
the details.

2. The case of bounded variation integrators

The following result holds:

Theorem 2.1. Let f, u, g : [a, b] → R be mappings such that f is of r-H–Hölder type
on [a, b], where r ∈ (0, 1] and H > 0 are given, and u is of bounded variation on [a, b].
Then we have the inequality:

|OD (f, g;u)| (7)

≤ H

[u (b)− u (a)] ·
∫ b

a
g (t) dt



(b−a)r+1

r+1
· ‖g‖∞ ·

∨b
a (u) , if g ∈ L∞[a, b],

(b−a)(qr+1)/q

(qr+1)1/q
· ‖g‖p ·

∨b
a (u) , if g ∈ Lp[a, b],

p > 1, 1
p

+ 1
q

= 1,

(b− a)r ‖g‖1 ·
∨b

a (u) , if g ∈ L1[a, b].

,

where,
∨b

a (u) is the total variation of u over [a, b].

Proof. It is well-known that for a continuous function p : [a, b] → R and a function
ν : [a, b]→ R of bounded variation, one has the inequality∣∣∣∣∫ b

a

p (t) dν (t)

∣∣∣∣ ≤ sup
t∈[a,b]

|p (t)|
b∨
a

(ν) .

Therefore, as u is of bounded variation on [a, b], we have

[u (b)− u (a)] ·
(∫ b

a

g (t) dt

)
· |OD (f, g;u)|

=

∣∣∣∣∫ b

a

[
f (x)

∫ b

a

g (t) dt−
∫ b

a

f (t) g (t) dt

]
du (x)

∣∣∣∣
≤ sup

x∈[a,b]

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ · b∨
a

(u) . (8)
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As f is of r-H-Hölder type on [a, b] and g ∈ L∞[a, b], then we have∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ ∫ b

a

|f (x)− f (t)| |g (t)| dt

≤ H

∫ b

a

|x− t|r |g (t)| dt

≤ H sup
t∈[a,b]

|g (t)| ·
∫ b

a

|x− t|r dt

=
H

r + 1

[
(x− a)r+1 + (b− x)r+1] · ‖g‖∞ . (9)

It follows that

sup
x∈[a,b]

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t)

∣∣∣∣ dx ≤ H

r + 1
(b− a)r+1 · ‖g‖∞ . (10)

Combining (8) and (10), we get the first inequality in (7).
To prove the second inequality in (7). As f is of r-H-Hölder type on [a, b], then we

have ∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ ∫ b

a

|f (x)− f (t)| |g (t)| dt

≤ H

∫ b

a

|x− t|r |g (t)| dt.

Now, as g ∈ Lp[a, b] therefore, by applying the well-known Hölder integral inequality,
we get∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ H

∫ b

a

|x− t|r |g (t)| dt

≤ H

(∫ b

a

|x− t|rq dt
)1/q (∫ b

a

|g (t)|p dt
)1/p

=
H

(qr + 1)1/q
[
(x− a)qr+1 + (b− x)qr+1]1/q · ‖g‖p .

It follows that

sup
x∈[a,b]

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ H

(qr + 1)1/q
· ‖g‖p · sup

x∈[a,b]

[
(x− a)qr+1 + (b− x)qr+1]1/q

≤ H
(b− a)(qr+1)/q

(qr + 1)1/q
· ‖g‖p . (11)

Combining (8) and (11), we get the second inequality in (7).
Finally, to prove the third inequality in (7). By assumptions we have:∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ ∫ b

a

|f (x)− f (t)| |g (t)| dt
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≤ H

∫ b

a

|x− t|r |g (t)| dt

≤ H sup
t∈[a,b]

{|x− t|r}
∫ b

a

|g (t)| dt

= H ‖g‖1 max
t∈[a,b]

{(x− a)r , (b− x)r}

= H ‖g‖1
[

max
t∈[a,b]

{(x− a) , (b− x)}
]r

= H ‖g‖1
[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]r
≤ H ‖g‖1 (b− a)r . (12)

Combining (8) and (12), we get the third inequality in (7) and thus the theorem is
proved. �

Corollary 2.1. Let u as in Theorem 2.1 and f : [a, b] → R be an L–Lipschitzian
mapping on [a, b]. Then we have the inequality

|OD (f, g;u)| (13)

≤ L

[u (b)− u (a)] ·
∫ b

a
g (t) dt



(b−a)2
2
· ‖g‖∞ ·

∨b
a (u) , if g ∈ L∞[a, b],

(b−a)(q+1)/q

(q+1)1/q
· ‖g‖p ·

∨b
a (u) , if g ∈ Lp[a, b],

p > 1, 1
p

+ 1
q

= 1,

(b− a) ‖g‖1 ·
∨b

a (u) , if g ∈ L1[a, b].

.

Corollary 2.2. Assume f as in Theorem 2.1. Let u ∈ C(1)[a, b]. Then we have the
inequality

|OD (f, g;u)| (14)

≤ H

[u (b)− u (a)] ·
∫ b

a
g (t) dt



(b−a)r+1

r+1
· ‖g‖∞ · ‖u′‖1,[a,b] , if g ∈ L∞[a, b],

(b−a)(qr+1)/q

(qr+1)1/q
· ‖g‖p · ‖u′‖1,[a,b] , if g ∈ Lp[a, b],

p > 1, 1
p

+ 1
q

= 1,

(b− a)r ‖g‖1 · ‖u′‖1,[a,b] , if g ∈ L1[a, b].

,

where ‖·‖1 is the L1 norm, namely ‖u′‖1,[a,b] :=
∫ b

a
|u′ (t)| dt.

Corollary 2.3. Assume f as in Theorem 2.1. Let u : [a, b] → R be a K-Lipschitzian
mapping with the constant K > 0. Then we have the inequality

|OD (f, g;u)| (15)
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≤ HK (b− a)

[u (b)− u (a)] ·
∫ b

a
g (t) dt



(b−a)r+1

r+1
· ‖g‖∞ , if g ∈ L∞[a, b],

(b−a)(qr+1)/q

(qr+1)1/q
· ‖g‖p , if g ∈ Lp[a, b],

p > 1, 1
p

+ 1
q

= 1,

(b− a)r ‖g‖1 , if g ∈ L1[a, b].

.

Corollary 2.4. Assume f as in Theorem 2.1. Let u : [a, b] → R be a monotonic
increasing mapping. Then we have the inequality

|OD (f, g;u)| (16)

≤ H∫ b

a
g (t) dt



(b−a)r+1

r+1
· ‖g‖∞ , if g ∈ L∞[a, b],

(b−a)(qr+1)/q

(qr+1)1/q
· ‖g‖p , if g ∈ Lp[a, b],

p > 1, 1
p

+ 1
q

= 1,

(b− a)r ‖g‖1 , if g ∈ L1[a, b].

.

Remark 2.1. For the last three inequalities, one may deduce several inequalities for
L-Lipschitzian integrands by setting r = 1 and replace H by L. We left the details to
the interested reader.

Remark 2.2. Under the assumptions of Theorem 2.1, one may deduce several in-
equalities for the Dragomir-Fedotov functional (5) and the weighted integral functional
(6).

3. The case of Lipschitzian integrators

Theorem 3.1. Let f : [a, b] → R be an r-H–Hölder type mapping on [a, b], and
u : [a, b]→ R be an L-Lipschitzian mapping on [a, b], where r and H,L > 0 are given.
Then we have the inequality

|OD (f, g;u)| (17)

≤ LH

[u (b)− u (a)] ·
∫ b

a
g (t) dt



2(b−a)r+2

(r+1)(r+2)
· ‖g‖∞ , , if g ∈ L∞[a, b],

2q

(qr+1)1/q
· (b−a)

(q(r+1)+1)/q

(q(r+1)+1)
· ‖g‖p , if g ∈ Lp[a, b],

p > 1, 1
p

+ 1
q

= 1,

(2r+1−1)
2r(r+1)

(b− a)r+1 ‖g‖1 , if g ∈ L1[a, b].

.
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Proof. It is well-known that for a Riemann integrable function p : [a, b] → R and
L–Lipschitzian function ν : [a, b]→ R, one has the inequality∣∣∣∣∫ b

a

p (t) dν (t)

∣∣∣∣ ≤ L

∫ b

a

|p (t)| dt.

Therefore, as u is L-Lipschitzian on [a, b], we have

[u (b)− u (a)] ·
(∫ b

a

g (t) dt

)
· |OD (f, g;u)|

=

∣∣∣∣∫ b

a

[
f (x)

∫ b

a

g (t) dt−
∫ b

a

f (t) g (t) dt

]
du (x)

∣∣∣∣
≤ L

∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ dx. (18)

As f is of r-H-Hölder type on [a, b] and g ∈ L∞[a, b], by (9) we have∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ H

r + 1

[
(x− a)r+1 + (b− x)r+1] · ‖g‖∞ . (19)

It follows that∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ dx ≤ H

r + 1
· ‖g‖∞ ·

∫ b

a

[
(x− a)r+1 + (b− x)r+1] dx

≤ 2H

(r + 1)(r + 2)
(b− a)r+2 · ‖g‖∞ . (20)

Combining (18) and (20), we get the first inequality in (17).
To prove the second inequality in (17). As f is of r-H-Hölder type on [a, b], then we

have ∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ ∫ b

a

|f (x)− f (t)| |g (t)| dt

≤ H

∫ b

a

|x− t|r |g (t)| dt.

Now, as g ∈ Lp[a, b] therefore, by applying the well-known Hölder integral inequality,
we get∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ H

∫ b

a

|x− t|r |g (t)| dt

≤ H

(∫ b

a

|x− t|rq dt
)1/q (∫ b

a

|g (t)|p dt
)1/p

=
H

(qr + 1)1/q
[
(x− a)qr+1 + (b− x)qr+1]1/q · ‖g‖p .
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=
H

(qr + 1)1/q

[(
(x− a)

(
r+

1
q

))q

+

(
(b− x)

(
r+

1
q

))q]1/q
· ‖g‖p .

(21)

Using the fact that (As +Bs)1/s ≤ (A+B), for all A,B ≥ 0 and s ≥ 1, it follows that∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ dx
≤ H

(qr + 1)1/q
· ‖g‖p

∫ b

a

[(
(x− a)

(
r+

1
q

))q

+

(
(b− x)

(
r+

1
q

))q]1/q
dx

≤ H

(qr + 1)1/q
· ‖g‖p ·

∫ b

a

[
(x− a)

(
r+

1
q

)
+ (b− x)

(
r+

1
q

)]
dx

≤ H
2q

(qr + 1)1/q
· (b− a)(q(r+1)+1)/q

(q (r + 1) + 1)
· ‖g‖p . (22)

Combining (18) and (22), we get the second inequality in (17).
Finally, to prove the third inequality in (17). By assumptions we have:∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ H ‖g‖1
[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]r (23)

It follows that∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ dx ≤ H ‖g‖1 ·
∫ b

a

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]r dx
= H ‖g‖1

(2r+1 − 1)

2r (r + 1)
(b− a)r+1 . (24)

Combining (18) and (24), we get the third inequality in (17) and thus the theorem is
proved.

�

Corollary 3.1. Let u as in Theorem 3.1 and f : [a, b] → R be an K–Lipschitzian
mapping on [a, b]. Then we have the inequality

|OD (f, g;u)| (25)

≤ LK

[u (b)− u (a)] ·
∫ b

a
g (t) dt



(b−a)3
3
· ‖g‖∞ , if g ∈ L∞[a, b],

2q

(q+1)1/q
· (b−a)

(2q+1)/q

(2q+1)
· ‖g‖p , if g ∈ Lp[a, b],

p > 1, 1
p

+ 1
q

= 1,

3
4

(b− a)2 ‖g‖1 , if g ∈ L1[a, b].

.

Remark 3.1. Under the assumptions of Theorem 3.1, one may deduce several inequal-
ities for the functionals (5) and (6).
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4. The case of monotonic integrators

Theorem 4.1. Let f : [a, b] → R be an r-H–Hölder type mapping on [a, b], and
u : [a, b] → R be a monotonic mapping on [a, b], where r and H > 0 are given. Then
we have the inequality

|OD (f, g;u)| (26)

≤ H

[u (b)− u (a)] ·
∫ b

a
g (t) dt



2 (b−a)r+1

r+1
· ‖g‖∞ · [u (b)− u (a)] , if g ∈ L∞[a, b],

2(b−a)r+
1
q

(qr+1)1/q
· ‖g‖p · [u (b)− u (a)] , if g ∈ Lp[a, b];

p > 1, 1
p

+ 1
q

= 1,

(b− a)r ‖g‖1 · [u (b)− u (a)] , if g ∈ L1[a, b].

.

Proof. It is well-known that for a monotonic non-decreasing function ν : [a, b]→ R and
continuous function p : [a, b]→ R, one has the inequality∣∣∣∣∫ b

a

p (t) dν (t)

∣∣∣∣ ≤ ∫ b

a

|p (t)| dν (t).

Therefore, as u is monotonic non-decreasing on [a, b], we have

[u (b)− u (a)] ·
(∫ b

a

g (t) dt

)
· |OD (f, g;u)|

=
1

(b− a)2

∣∣∣∣∫ b

a

[
f (x)

∫ b

a

g (t) dt−
∫ b

a

f (t) g (t) dt

]
du (x)

∣∣∣∣
≤
∫ b

a

∣∣∣∣f (x)

∫ b

a

g (t) dt−
∫ b

a

f (t) g (t) dt

∣∣∣∣ du(x)

=

∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ du(x). (27)

As f is of r-H-Hölder type on [a, b] and g ∈ L∞[a, b], by (9) we have∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ H

r + 1

[
(x− a)r+1 + (b− x)r+1] · ‖g‖∞ . (28)

It follows that∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ du (x)

≤ H

r + 1
· ‖g‖∞ ·

∫ b

a

[
(x− a)r+1 + (b− x)r+1] du (x). (29)

Now, using Riemann–Stieltjes integral we have∫ b

a

(x− a)r+1 du (x) = (b− a)r+1 u (b)− (r + 1)

∫ b

a

(x− a)r u (x) dx, (30)
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and ∫ b

a

(b− x)r+1 du (x) = − (b− a)r+1 u (a) + (r + 1)

∫ b

a

(b− x)r u (x) dx. (31)

Adding (30) and (31), we get∫ b

a

[
(x− a)r+1 + (b− x)r+1] du (x).

= (b− a)r+1 [u (b)− u (a)] + (r + 1)

∫ b

a

[(b− x)r − (x− a)r]u (x) dx. (32)

Now, by the monotonicity property of u we have∫ b

a

(x− a)r u (x) dx ≥ u (a)

∫ b

a

(x− a)r dx =
(b− a)r+1

r + 1
· u (a) , (33)

and ∫ b

a

(b− x)r u (x) dx ≤ u (b)

∫ b

a

(b− x)r dx =
(b− a)r+1

r + 1
· u (b) . (34)

Substituting (33) and (34) in (32), we get∫ b

a

[
(x− a)r+1 + (b− x)r+1] du (x) ≤ 2 (b− a)r+1 [u (b)− u (a)] . (35)

Substituting (35) in (29), we get∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ du (x) ≤ 2H
(b− a)r+1

r + 1
· ‖g‖∞ · [u (b)− u (a)] ,

and therefore, by (27) we get the first inequality in (26).
To prove the second inequality in (26). As f is of r-H-Hölder type on [a, b] and

g ∈ Lp[a, b] therefore, by (21), we have∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣
≤ H

(qr + 1)1/q

[(
(x− a)

(
r+

1
q

))q

+

(
(b− x)

(
r+

1
q

))q]1/q
· ‖g‖p . (36)

It follows by (22), that∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ du (x)

≤ H

(qr + 1)1/q
· ‖g‖p

∫ b

a

[(
(x− a)

(
r+

1
q

))q

+

(
(b− x)

(
r+

1
q

))q]1/q
du (x)

≤ H

(qr + 1)1/q
· ‖g‖p ·

∫ b

a

[
(x− a)

(
r+

1
q

)
+ (b− x)

(
r+

1
q

)]
du (x). (37)
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Now, using Riemann–Stieltjes integral we have∫ b

a

(x− a)
r+

1
q du (x)

= (b− a)
r+

1
q u (b)−

(
r +

1

q

)∫ b

a

(x− a)
r+

1
q
−1
u (x) dx, (38)

and∫ b

a

(b− x)
r+

1
q du (x)

= − (b− a)
r+

1
q u (a) +

(
r +

1

q

)∫ b

a

(b− x)
r+

1
q
−1
u (x) dx. (39)

Adding (38) and (39), we get∫ b

a

[
(x− a)r+1 + (b− x)r+1] du (x).

= (b− a)
r+

1
q [u (b)− u (a)] +

(
r +

1

q

)∫ b

a

[
(b− x)

r+
1
q
−1 − (x− a)

r+
1
q
−1
]
u (x) dx.

(40)

Now, by the monotonicity property of u we have∫ b

a

(x− a)
r+

1
q
−1
u (x) dx ≥ u (a)

∫ b

a

(x− a)
r+

1
q
−1
dx

=
q

qr + 1
(b− a)

r+
1
q · u (a) , (41)

and ∫ b

a

(b− x)
r+

1
q
−1
u (x) dx ≤ u (b)

∫ b

a

(b− x)
r+

1
q
−1
dx

=
q

qr + 1
(b− a)

r+
1
q · u (b) . (42)

Substituting (41) and (42) in (40), we get∫ b

a

[
(x− a)r+1 + (b− x)r+1] du (x) ≤ 2 (b− a)r+

1
q [u (b)− u (a)] . (43)

Substituting (43) in (37), we get∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ du (x)

≤ 2H

(qr + 1)1/q
(b− a)r+

1
q · ‖g‖p · [u (b)− u (a)] ,

and therefore, by (27) we get the second inequality in (26).
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Finally, to prove the third inequality in (26). As f is of r-H-Hölder type on [a, b]
and g ∈ L1[a, b] therefore, by (23), we have∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ ≤ H ‖g‖1
[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]r , (44)

which gives by (27), that∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ du (x)

≤ H ‖g‖1 ·
∫ b

a

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]r du (x). (45)

Now, using Riemann–Stieltjes integral we have∫ b

a

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]r du (x)

=

∫ a+b
2

a

(b− x)r du (x) +

∫ b

a+b
2

(x− a)r du (x)

=

(
b− a

2

)r

u

(
a+ b

2

)
− (b− a)r u (a) + r

∫ a+b
2

a

(b− x)r−1 u (x) dx

+ (b− a)r u (b)−
(
b− a

2

)r

u

(
a+ b

2

)
− r

∫ b

a+b
2

(x− a)r−1 u (x) dx

= (b− a)r [u (b)− u (a)] + r

∫ a+b
2

a

(b− x)r−1 u (x) dx−
∫ b

a+b
2

(x− a)r−1 u (x) dx

 .
(46)

Now, by the monotonicity property of u we have∫ a+b
2

a

(b− x)r−1 u (x) dx ≤ u

(
a+ b

2

)∫ a+b
2

a

(b− x)r−1 dx

=
(2r − 1)

r2r
(b− a)r · u

(
a+ b

2

)
, (47)

and ∫ b

a+b
2

(x− a)r−1 u (x) dx ≥ u

(
a+ b

2

)∫ b

a+b
2

(x− a)r−1 dx

=
(2r − 1)

r2r
(b− a)r · u

(
a+ b

2

)
, (48)
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Substituting (47) and (48) in (46), we get∫ b

a

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]r du (x) ≤ (b− a)r [u (b)− u (a)] . (49)

Substituting (49) in (45), we get∫ b

a

∣∣∣∣∫ b

a

[f (x)− f (t)] g (t) dt

∣∣∣∣ du (x) ≤ H ‖g‖1 · (b− a)r [u (b)− u (a)] .

and therefore, by (27) we get the third inequality in (26), and thus the theorem is
proved. �

Remark 4.1. Under the assumptions of Theorem 4.1, one may deduce several inequal-
ities for the functionals (5) and (6).
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