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New Hermite Hadamard type inequalities for twice
differentiable convex mappings via Green function
and applications
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Abstract. We derive some Hermite Hamamard type integral inequalities for functions whose
second derivatives absolute value are convex. Some eror estimates for the trapezoidal formula
are obtained. Finally, some natural applications to special means of real numbers are given.
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1. Introduction

The following inequality is well known in the literature as the Hermite-Hadamard
integral inequality (see, [2], [5]):

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1)

where f : I ⊂ R → R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b. A function f : [a, b] ⊂ R→ R, is said to be convex if the following
inequality holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ [a, b] and λ ∈ [0, 1] . We say that f is concave if (−f) is convex.
The inequalities (1) have grown into a significant pillar for mathematical analysis

and optimization, besides, by looking into a variety of settings, these inequalities are
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found to have a number of uses. What is more, for a specific choice of the function f,
many inequalities with special means are obtainable. Hermite Hadamard’s inequality
(1), for example, is significant in its rich geometry and hence there are many studies
on it to demonstrate its new proofs, refinements, extensions and generalizations. You
can check ([1], [2], [4], [5] and [10]-[15]) and the references included there.

In [1], Dragomir and Agarwal proved the following inequality connected with the
right part of (1).

Theorem 1.1. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b. If |f ′| is convex on [a, b], then the following inequality holds:∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ (b− a)

8
(|f ′(a)|+ |f ′(b)|) . (2)

In [6], Pearce and Pěcarić proved the following inequality.

Theorem 1.2. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b. If |f ′|q is convex on [a, b], for some q ≥ 1, then we have∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ b− a
4

(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

.

In [8], Sarikaya and Aktan established some inequalities related to Hermite-Hadamard’s
inequality for functions whose second derivatives are convex.

Theorem 1.3. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦ such that
f ′′ ∈ L [a, b] and 0 ≤ λ ≤ 1 where a, b ∈ I◦ with a < b. If |f ′′| is a convex on [a, b],
then the following inequalities hold:∣∣∣∣(λ− 1) f

(
a+ b

2

)
− λf (a) + f (b)

2
+

1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤


(b−a)2

12

[(
λ4 + (1 + λ) (1− λ)3 + 5λ−3

4

)
|f ′(a)|

+
(
λ4 + (2− λ)λ3 + 1−3λ

4

)
|f ′(b)|

]
, for 0 ≤ λ ≤ 1

2

(b−a)2(3λ−1)
48

[|f ′(a)|+ |f ′(b)|] , for 1
2
≤ λ ≤ 1.

Remark 1.1. Under the assumptions Theorem 1.3 with λ = 1 in Theorem 1.3, then
we have ∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣ ≤ (b− a)2

12

(∣∣f ′′(a)
∣∣+
∣∣f ′′(b)∣∣

2

)
.

In [3], Husain et al. proved some inequalities related to Hermite-Hadamard’s in-
equality for s-convex functions:

Theorem 1.4. Let f : I◦ ⊆ R→ R be a twice differentiable mapping on I◦ such that
f ′′ ∈ L [a, b] where a, b ∈ I◦ with a < b. If |f ′′|q is s−convex on [a, b] for some fixed
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s ∈ (0, 1] and q ≥ 1, then the following inequality holds:∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ (b− a)2

2× 6
1
p

[∣∣f ′′(a)
∣∣q +

∣∣f ′′(b)∣∣q
(s+ 2) (s+ 3)

] 1
q

(3)

where 1
p

+ 1
q

= 1.

Remark 1.2. If we take s = 1 in (3), then we have∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ (b− a)2

12

[∣∣f ′′(a)
∣∣q +

∣∣f ′′(b)∣∣q
2

] 1
q

.

The interested reader is refer to [3],[7]-[9] for inequalities involving functions whose
second derivatives are convex.

In this study, using functions whose second derivatives absolute values are convex,
we establish new inequalities that are connected with the right-hand side of Hermite-
Hadamard inequality. Then we give some eror estimates for trapezoidal quadrature
formula by using these inequalities. Finally, we obtain some applications of these
inequalities for special means are provided.

2. Main Results

In order to prove our main results we need the following lemma:

Lemma 2.1. Let f : I ⊂ R → R be a twice differentiable function on I◦ such that
f ′′ ∈ L [a, b] , the interior of the interval I, where a, b ∈ I◦with a < b. Then the
following identity holds:

1

b− a

b∫
a

b∫
a

G (x, y) f ′′ (y) dydx =
1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2
(4)

where

G (x, y) :=


(x−a)(y−b)

(b−a) , a ≤ x ≤ y ≤ b

(x−b)(y−a)
(b−a) , a ≤ y ≤ x ≤ b.

Proof. By integration by parts, we have the following identity:

b∫
a

G (x, y) f ′′ (y) dy = G (x, y) f ′ (y)|by=a dx−
b∫

a

∂G (x, y)

∂y
f ′ (y) dydx.

Because of G (x, b) = G (x, a) = 0, we get

b∫
a

G (x, y) f ′′ (y) dy = −x− b
b− a

x∫
a

f ′ (y) dy − x− a
b− a

b∫
x

f ′ (y) dy (5)
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= f(x)− b− x
b− a

f(a)− x− a
b− a

f(b).

Integrating both sides of (5) with respect to x over [a, b] and rewritten, we have

b∫
a

b∫
a

G (x, y) f ′′ (y) dydx =

b∫
a

f(x)dx− (b− a)
f(a) + f(b)

2
.

Hence, the proof is completed. �

We obtain trapezoid inequality by using convexity of |f ′′| .

Theorem 2.1. Let f : I◦ ⊆ R → R be a twice differentiable mapping on I◦, a, b ∈ I◦
with a < b. If |f ′′| is convex on [a, b], then, for all y ∈ [a, b] , the following inequality
holds: ∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣ ≤ (b− a)2

12

(∣∣f ′′(a)
∣∣+
∣∣f ′′(b)∣∣

2

)
. (6)

Proof. We take absolute value of (4), we find that∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣
≤ 1

b− a

b∫
a

b∫
a

|G (x, y)| |f ′′ (y)| dydx

=

b∫
a

x∫
a

(b− x) (y − a)

(b− a)2
|f ′′ (y)| dydx+

b∫
a

b∫
x

(b− y) (x− a)

(b− a)2
|f ′′ (y)| dydx.

Since
∣∣f ′′(y)

∣∣ is convex on [a, b] , we have∣∣∣∣f ′′ (b− yb− a
a+

y − a
b− a

b

)∣∣∣∣ ≤ b− y
b− a

∣∣∣f ′′(a)
∣∣∣+

y − a
b− a

∣∣∣f ′′(b)∣∣∣ . (7)

From (7), it follows that∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣
≤

∣∣∣f ′′(a)
∣∣∣ b∫
a

x∫
a

(b− x) (y − a) (b− y)

(b− a)3
dydx+

∣∣∣f ′′(b)∣∣∣ b∫
a

x∫
a

(b− x) (y − a)2

(b− a)3
dydx

+
∣∣∣f ′′(a)

∣∣∣ b∫
a

b∫
x

(x− a) (b− y)2

(b− a)3
dydx+

∣∣∣f ′′(b)∣∣∣ b∫
a

b∫
x

(x− a) (b− y) (y − a)

(b− a)3
dydx.
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If we calculate the above integrals and also use elementary analysis, then we easily
deduce required inequality (6) which completes the proof. �

We derive trapezoid inequality by using convexity of |f ′′|q .

Theorem 2.2. Let f : I◦ ⊆ R → R be a twice differentiable mapping on I◦, a, b ∈ I◦
with a < b. If |f ′′|q is convex on [a, b], q > 1, for all y ∈ [a, b] , then the following
inequality holds:∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣ (8)

≤ (b− a)2

(p+ 1)
1
p

(∣∣f ′′(a)
∣∣q +

∣∣f ′′(b)∣∣q
2

) 1
q

[B (p+ 2, p+ 1) +B (p+ 1, p+ 2)]
1
p

where 1
p

+ 1
q

= 1 and B (p, q) is Euler’s Beta function.

Proof. We take absolute value of (4). Using Holder’s inequality, we find that∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣ (9)

≤ 1

b− a

b∫
a

b∫
a

|G (x, y)| |f ′′ (y)| dydx

≤ 1

b− a

 b∫
a

b∫
a

|G (x, y)|p dydx


1
p
 b∫

a

b∫
a

|f ′′ (y)|q dydx


1
q

.

We need to calculate above integrals to prove the theorem.
Let’s calculate first integral

b∫
a

b∫
a

|G (x, y)|p dydx

=

b∫
a

x∫
a

(b− x)p (y − a)p

(b− a)p
dydx+

b∫
a

b∫
x

(b− y)p (x− a)p

(b− a)p
dydx

=

b∫
a

(b− x)p (x− a)p+1

(b− a)p (p+ 1)
dx+

b∫
a

(x− a)p (b− x)p+1

(b− a)p (p+ 1)
dx.
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Using the change of the variables x− a = (b− a)u and b− x = (b− a)u for the above
integrals, respectively, we write

b∫
a

b∫
a

|G (x, y)|p dydx =
(b− a)p+2

p+ 1
[B (p+ 2, p+ 1) +B (p+ 1, p+ 2)] (10)

where B (p, q) =
1∫
0

up−1 (1− u)q−1 du, (p, q > 0) .

Since
∣∣f ′′(t)∣∣q is convex on [a, b] , we have∣∣∣∣f ′′ (b− yb− a

a+
y − a
b− a

b

)∣∣∣∣q ≤ b− y
b− a

∣∣∣f ′′(a)
∣∣∣q +

y − a
b− a

∣∣∣f ′′(b)∣∣∣q . (11)

From (11), it follows that

b∫
a

b∫
a

|f ′′ (y)|q dydx (12)

≤
∣∣∣f ′′(a)

∣∣∣q b∫
a

b∫
a

b− y
b− a

dydx+
∣∣∣f ′′(b)∣∣∣q b∫

a

b∫
a

y − a
b− a

dydx

=

∣∣f ′′(a)
∣∣q +

∣∣f ′′(b)∣∣q
2

(b− a)2 .

If we substitute (10) and (12) in (9), then we easily deduce required inequality (8)
which completes the proof. �

Now, we establish trapezoid inequality in a different way by using convexity of |f ′′|q .

Theorem 2.3. Let f : I◦ ⊆ R → R be a twice differentiable mapping on I◦, a, b ∈ I◦
with a < b. If |f ′′|q is convex on [a, b], q > 1, for all y ∈ [a, b] , then the following
inequality holds: ∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣
≤ (b− a)2+

1
q

(p+ 1)
1
p 2

1
q

{
[B (p+ 2, p+ 1)]

1
p

(
2 |f ′′ (a)|q + |f ′′ (b)|q

3

) 1
q

+ [B (p+ 1, p+ 2)]
1
p

(
|f ′′ (a)|q + 2 |f ′′ (b)|q

3

) 1
q

}

where 1
p

+ 1
q

= 1 and B (p, q) is Euler’s Beta function.
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Proof. We take absolute value of (4). Using Holder’s inequality, we find that∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣
≤ 1

b− a

b∫
a

b∫
a

|G (x, y)| |f ′′ (y)| dydx

=

b∫
a

x∫
a

(b− x) (y − a)

(b− a)2
|f ′′ (y)| dydx+

b∫
a

b∫
x

(b− y) (x− a)

(b− a)2
|f ′′ (y)| dydx

≤

 b∫
a

x∫
a

(b− x)p (y − a)p

(b− a)2p
dydx


1
p
 b∫

a

x∫
a

|f ′′ (y)|q dydx


1
q

+

 b∫
a

b∫
x

(b− y)p (x− a)p

(b− a)2p
dydx


1
p
 b∫

a

b∫
x

|f ′′ (y)|q dydx


1
q

.

If we calculate the above interals utilizing the convexity of |f ′′ (y)|q , from (11), then
we obtain ∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣
≤

(
(b− a)2

p+ 1
B (p+ 2, p+ 1)

) 1
p
(

(b− a)3

2
× 2 |f ′′ (a)|q + |f ′′ (b)|q

3

) 1
q

+

(
(b− a)2

p+ 1
B (p+ 1, p+ 2)

) 1
p
(

(b− a)3

2
× |f

′′ (a)|q + 2 |f ′′ (b)|q

3

) 1
q

.

The proof is thus completed. �

Theorem 2.4. Let f : I◦ ⊆ R → R be a twice differentiable mapping on I◦, a, b ∈ I◦
with a < b. If |f ′′|q is convex on [a, b], q ≥ 1, for all y ∈ [a, b] , then the following
inequality holds:∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣ ≤ (b− a)2

12 · 2
1
p

(∣∣f ′′(a)
∣∣q +

∣∣f ′′(b)∣∣q
2

) 1
q

(13)

where 1
p

+ 1
q

= 1.
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Proof. We take absolute value of (4). Because of 1
p

+ 1
q

= 1, 1
p

+ 1
q

can be written

instead of 1. Using Holder’s inequality, we find that∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f(a) + f(b)

2

∣∣∣∣∣∣ (14)

≤ 1

b− a

b∫
a

b∫
a

|G (x, y)|
1
p
+ 1

q |f ′′ (y)| dydx

≤ 1

b− a

 b∫
a

b∫
a

|G (x, y)| dydx


1
p
 b∫

a

b∫
a

|G (x, y)| |f ′′ (y)|q dydx


1
q

.

We calculate the above integrals, respectively,

b∫
a

b∫
a

|G (x, y)| dydx =
(b− a)3

24
. (15)

Since
∣∣f ′′(t)∣∣q is convex on [a, b] , we get

b∫
a

b∫
a

|G (x, y)| |f ′′ (y)|q dydx =
(b− a)3

12

(∣∣f ′′(a)
∣∣q +

∣∣f ′′(b)∣∣q
2

)
. (16)

Substituting the equalities (15) and (16) in (14), we obtain the inequality (13) which
completes the proof. �

3. Applications to Numerical Integration

We now consider applications of the integral inequalities developed in the previous
section, to obtain estimates of composite quadrature rules which, it turns out have a
markedly smaller error than that which may be obtained by the classical results.

Let In : a = x0 < x1 < ... < xn−1 < xn = b be a partition of the interval [a, b] ,
ξi ∈ [xi, xi+1] (i = 0, ..., n− 1) and consider the trapezoidal rule

AT (f, In) =
n−1∑
i=0

[
f(xi) + f(xi+1)

2

]
hi (17)

where hi = (xi+1 − xi), i = 0, ..., n− 1.

Theorem 3.1. Let f : I◦ ⊆ R → R be a twice differentiable mapping on I◦, a, b ∈ I◦
with a < b. If |f ′′| is convex on [a, b], for all y ∈ [a, b] , then we have the representation

b∫
a

f(x)dx = AT (f, In) +RT (f, In)
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where AT (f, In) is as defined in (17) and the remainder satisfies the astimations:

|RT (f, In)| ≤ 1

12

n−1∑
i=0

[∣∣f ′′(xi)∣∣+
∣∣f ′′(xi+1)

∣∣
2

]
h3i (18)

for i = 0, ..., n− 1.

Proof. Applying Theorem 2.1 on the interval [xi, xi+1] , i = 0, ..., n− 1, we obtain∣∣∣∣∣∣
xi+1∫
xi

f(x)dx−
[
f(xi) + f(xi+1)

2

]
hi

∣∣∣∣∣∣
≤ 1

12

(∣∣f ′′(xi)∣∣+
∣∣f ′′(xi+1)

∣∣
2

)
h3i

for i = 0, ..., n− 1.
Summing over i from 0 to n − 1 and using the triangle inequality we obtain the

estimation (18). �

Remark 3.1. If we consider the inequality (8), then we get the quadrature formula

b∫
a

f(x)dx = AT (f, In) +RT (f, In)

where AT (f, In) is trapezoidal formula and the remainder term satisfies the estimate

|RT (f, In)| ≤ [B (p+ 2, p+ 1) +B (p+ 1, p+ 2)]
1
p

(p+ 1)
1
p

×
n−1∑
i=0

[∣∣f ′′(xi)∣∣q +
∣∣f ′′(xi+1)

∣∣q
2

] 1
q

h3i .

Remark 3.2. If we consider the inequality (13), then we get the quadrature formula

b∫
a

f(x)dx = AT (f, In) +RT (f, In)

where AT (f, In) is trapezoidal formula and the remainder term satisfies the estimate

|RT (f, In)| ≤ 1

12 · 2
1
p

n−1∑
i=0

[∣∣f ′′(xi)∣∣q +
∣∣f ′′(xi+1)

∣∣q
2

] 1
q

h3i .
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4. Applications to Some Special Means

Let us recall the following means:
(a) The arithmatic mean:

A = A(a, b) := a+b
2
, a, b ≥ 0

(b) The Geometric mean:

G = G(a, b) :=
√
ab, a, b ≥ 0

(c) The Harmonic mean:

H = H(a, b) := 2
1
a
+ 1

b

, a, b > 0

(d) The Logarithmic mean:

L = L(a, b) :=

{
a if a = b
b−a

ln b−ln a if a 6= b
, a, b > 0

(e) The Identric mean:

I = I(a, b) :=

{
a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b
, a, b > 0

(f) The p−logarithmic mean:

Lp = Lp(a, b) :=

{
a if a = b[

bp+1−ap+1

(p+1)(b−a)

] 1
p

if a 6= b
, a, b > 0

where p ∈ R\ {−1, 0} .
The following simple relationships are known in literature

H ≤ G ≤ L ≤ I ≤ A.

It is also known that Lp is monotonically increasing in p ∈ R with L0 = I and
L−1 = L.

(1) Consider the mapping f : (0,∞)→ R, f(x) = xn, x ∈ R, n ∈ Z and |n(n− 1)| ≥
3.

Then, we have, for 0 < a < b,

1

b− a

b∫
a

f (t) dt = Lnn

and
f(a) + f(b)

2
= A(an, bn).

Using the inequality (6), we have the result:

|Lnn − A(an, bn)| ≤ |n(n− 1)| (b− a)2

12
A(an−2, bn−2).
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Also, from (8), we get the inequality

|Lnn − A(an, bn)| ≤ |n(n− 1)| [B (p+ 2, p+ 1) +B (p+ 1, p+ 2)]
1
p

× (b− a)2

(p+ 1)
1
p

[
A(aq(n−2), bq(n−2))

] 1
q .

(2) Consider the mapping f(x) = 1
x
, x ∈ [a, b] ⊂ (0,∞) .

Then, we have

1

b− a

b∫
a

f (t) dt = L−1−1 =
1

L

and

f(a) + f(b)

2
= H−1.

Using the inequality (6), we have the result:

∣∣L−1−1 −H−1∣∣ ≤ (b− a)2

12
H−1(a3, b3).

Also, from (13), we get the inequality

∣∣L−1−1 −H−1∣∣ ≤ (b− a)2

12 · 2
1
p

[
H−1(a3q, b3q)

] 1
q .

(3) Consider the mapping f(x) = − lnx, x ∈ [a, b] ⊂ (0,∞) .
Then, we have

1

b− a

b∫
a

f (t) dt = − ln I(a, b)

and

f(a) + f(b)

2
= −A(ln a, ln b).

Using the inequality (6), we have the result:

|A(ln a, ln b)− ln I(a, b)| ≤ (b− a)2

12
H−1(a2, b2).

Also, from (13), we get the inequality

|A(ln a, ln b)− ln I(a, b)| ≤ (b− a)2

12 · 2
1
p

[
H−1(a2q, b2q)

] 1
q .
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