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Further Inequalities for Sequences and Power
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ABSTRACT. By the use of some inequalities for nonnegative Hermitian forms some new inequal-
ities for sequences and power series of bounded linear operators in complex Hilbert spaces are
established. Applications for some fundamental functions of interest are also given.
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1. Introduction

Let K be the field of real or complex numbers, i.e., K =R or C and X be a linear
space over K.

Definition 1.1. A functional (-,-) : X x X — K is said to be a Hermitian form on X
if

(H1) (ax +by,2) =a(x,z) + b(y, 2) for a,b € K and z,y,z € X;

(H2) (2,4) = (4,2) for all 7,y € X.

The functional (-,-) is said to be positive semi-definite on a subspace Y of X if
(H3) (y,y) > 0 for every y € Y,
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48 S. S. DRAGOMIR

and positive definite on Y if it is positive semi-definite on Y and

(H4) (y,y) =0,y € Y implies y = 0.

The functional (-, -) is said to be definite on Y provided that either (-,-) or — (+,-) is
positive semi-definite on Y.

When a Hermitian functional (-, ) is positive-definite on the whole space X, then,
as usual, we will call it an inner product on X and will denote it by (-,-).

We use the following notations related to a given Hermitian form (-,-) on X :

Xo:={r e X|(z,z) =0}, K:={x € X|(x,z) <0}
and, for a given z € X,
X® ={reX|(x,2) =0} and L(z2):={azla e K}.
The following fundamental facts concerning Hermitian forms hold:

Theorem 1.1 (Kurepa, 1968 [28]). Let X and (-,-) be as above.
(1) If e € X is such that (e, e) # 0, then we have the decomposition

X =L(e)P X, (1)

where @ denotes the direct sum of the linear subspaces X© and L (e) ;

(2) If the functional (-,-) is positive semi-definite on X© for at least one e € K,
then (-,-) is positive semi-definite on XY) for each f € K;

(3) The functional (-,-) is positive semi-definite on X'© with e € K if and only if
the inequality

@ > (,2) (,9) @)

holds for all x € K and all y € X;

(4) The functional (-,-) is semi-definite on X if and only if the Schwarz’s inequality

(@ y) < (z,2) (y,9) (3)

holds for all x,y € X;
(5) The case of equality holds in (3) for x,y € X and in (2), forxz € K, y € X,
respectively; if and only if there exists a scalar a € K such that

y—ar e X" = XoN X®),

Let X be a linear space over the real or complex number field K and let us denote by
H (X)) the class of all positive semi-definite Hermitian forms on X, or, for simplicity,
nonnegative forms on X.

If (-,-) € H(X), then the functional ||| = (~,-)% is a semi-norm on X and the
following equivalent versions of Schwarz’s inequality hold:
I Iyll* = |z, )" or Nzl flyll = |(z,y)] (4)

for any x,y € X.
Now, let us observe that H (X) is a convez cone in the linear space of all mappings
defined on X? with values in K, i.e.,

(e> ('v ')1 ) ('7 ')2 €eH (X> implies that ('7 ')1 + ('7 ')2 S (X> )
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(ee) @ >0 and (-,-) € H (X) implies that a (-,-) € H (X).
We can introduce on H (X) the following binary relation [23]:
(,)9 > (), ifandonlyif |z|,>|z||, forall =€ X. (5)
We observe that the following properties hold:
(1) (1) 2 () for all () € H(X):

(bb) ('7 ')3 2 ('7 ')2 and ('7 ')2 = ('7 ')1 ?mphes that ('7 ')3 > ('7 ')1;
(bbb) ('7 ) 2 (" ')1 and (" ) > ('7 ')2 implies that ('7 ')2 = ('7 ')1;

i.e., the binary relation defined by (5) is an order relation on H (X).

While (b) and (bb) are obvious from the definition, we should remark, for (bbb),
that if (-,-), > (-,-); and (-,-); > (-,-)y, then obviously |z[|, = ||z||,; for all z € X,
which implies, by the following well known identity:

1 . . .
() = 7 [l +wll = e = vl + i (l + iyll = lle = iy][)] (6)
with z,y € X and k € {1,2}, that (z,y), = (z,y), for all z,y € X.

2. Inequalities for Hermitian Forms

The following result is of interest in itself as well:

Lemma 2.1. Let X be a linear space over the real or complex number field K and (-, -)
a nonnegative Hermitian form on X. If y € X is such that (y,y) # 0, then

Dy :HXH%K7 Py (I,Z):(ﬁ,Z) ||y|’2_(xay) (yVZ) (7)
1s also a nonnegative Hermitian form on X.
We have the inequalities

(l1” Iy 1” = 1, 9)1”) (Ul 1217 = [y, 2)I°) (8)

> |(2,2) |yl = (,9) (y,2)]°
and

[
—~
Nej
=

(llz + 2l 1ll* = (@ + z,9)[)
1

SUMWHMV—waN§2+UWWHM2—K%@Fﬁ
for any x,y,z € X.
Proof. By Schwarz’s inequality for the nonnegative Hermitian form (-, ) we have
py(,2) = (z,2) |yllI* = (z,9) (y,2)
= [l=* lyll* = 1z, 9)I* = 0

for any x € X.
We have

py (@ + Bu, z) = (az + fu, 2) |yl* = (az + Bu,y) (y, 2)
= a(z,2) JyllI* —a(z,y) (y,2)
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+ B (u,2) lylI* = B (w,y) (y, 2)
=a[(z,2) lylI* = (,) (y,2)]
+ B8 [(w,2) Iyl = (u, y) (y, 2)]
= apy (v, 2) + Bpy (u, 2)

for any o, f € K and z,u € X.
Also, we have

py(z2) = (z2)llyl* = (2.9) (y, )
(z,2) lyll* = (2, 9)(y, 2)
= (.2) lyl* = (z,9) (y.2) = p, (2, 2)

8

N

for any x,z € X.
If y € X is such that (y,y) = 0, then the inequalities (8) and (9) are obviously true.
If y € X is such that (y,y) # 0, then by Schwarz’s inequality for p, (-, -) we have

py (2, 2)° < py (2, 2) py (2, 2)

for any x,z € X, which is equivalent to (8).
The inequality (9) follows by the triangle inequality for the nonnegative form p, (-, -) .
[

Remark 2.1. The case when (-,-) is an inner product in Lemma 2.1 was obtained in
1985 by S. S. Dragomir, [3].

Remark 2.2. Putting z = Ay in (9), we get:
2 112 2 20 12 2
0< llz+ Ml Nyl = [z + Ay, 9)I” < 2l vl = [(z, y)] (10)
and, ©n particular,

2 2 2 2 2 2
0<llzxyl™llyl” = [z £y,9)" < =[I” lylI” = |(z,9)] (11)

for every xz,y € H.
We note here that the inequality (10) is in fact equivalent to the following statement

Sup [+ Ayl* lyl” = 1+ Ay, 9)[*] = 2 l” lyll* = |z, )] (12)

for each x,y € H.
The following result holds:

Theorem 2.1. Let X be a linear space over the real or complex number field K and
(+,+) a nonnegative Hermitian form on X. For any x,y,z € X, the following refinement
of the Schwarz inequality holds:

2l 20 lyl* > [, 2) Iyl = (2, ) (g, 2)| + (2, ) (3, 2)] (13)
> [(z,2)] llyll” -
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Proof. Applying the inequality (8), we can state that

(=12 191 = 1)) (I 12112 = 1y, 2)]?)
> |(2,2) |yl = (,9) (v, 2)]°

any z,y,z € X.
Utilising the elementary inequality for real numbers

(m* —=n?) (0 = ¢*) < (mp—ngq)®,
we can easily see that
(1 Iyl = 1, 9)*) (Ul 121 = 1y, 2))
2
< (Il gl 121 = (2. 9) (9, 2)])

for any z,y,z € X.
Since, by Schwarz’s inequality we have

2l lyll > |(z,y)| and [y [|z]| = [(y, 2)],
hence
] 9117 1zl = (2, y) (v, 2)] > 0

for any z,y,z € X.
Therefore, by (14) and (16) we deduce

2l Iyl 11 = [, y) (g, )] 2 [(2,2) Jyll® = (2, 9) (9, 2)

which proves the first inequality in (13).

Y

Corollary 2.1. For any x,y,z € X we have

1
5 Uzl izl + [z, )] lyll* > 1(z,9) (y,2)] -
Proof. By the modulus property we have

(@, 2) lyl* = (2,9) (4, 2)] = (z,9) (4, 2)] = (@, 2)] yll”

and by the first inequality in (13) we have

el =0 lyl® = [ 2) Myl = () (g, 2)] + () (g, 2)]
> |(z,y) (4, 2) = (@, )yl + [(2,9) (4, 2)]

for any z,y,z € X, which is equivalent to (18).

51

(14)

(18)

O

Remark 2.3. We observe that if (-,-) is an inner product, then (18) reduces to

Buzano’s inequality obtained in 1974 [2] in a different way.
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3. Vector Inequalities for n-Tuple of Operators

Let T = (T1,...,T,) € B(H) x ... x B(H) := B™ (H) be an n-tuple of bounded
linear operators on the Hilbert space (H;(-,-)) and p = (p1, ..., pn) € R an n-tuple of
nonnegative weights not all of them equal to zero. For an z € H, x # 0 we define

ij Tz, V;z) <<ZpJVT>:Ex> (19)

where T = (T4,...,T},),V = (W4, ..., V,,) € B™ (H).
We need the following result:

Lemma 3.1. For any x € H, x # 0 and p = (p1, ...,pn) € R we have that (-, - is

a nonnegative Hermitian form on B™ (H).

Proof. We have that

for any T = (T4, ..., T,) € B™ (H), where the operator modulus is defined by |A|* =
A*A, Ae B(H).

The functional (-, ), is linear in the first variable and

)b

(V = <<ipijVj> 1’756> = <$7 (im@“@) $> (21)
(B o)~ {(Boor) )
for any T = (Ty,...,T,,),V = (W1, ..., V,,) € B™ (H). O

We have the following result for n-tuples of operators:

Theorem 3.1. For T = (Ty,...,T,,)), U = (Uy,....,U,), V= (V},.., V) € B™ (H) \
{0}, p=(p1,....pn) € RY and x € H, we have

(T.1),, (0.0, - [0, [ 2

2
p7x

> )<T7 V>p,z <U7 U>p,a: - <T’ U>p7$ <U’ V>va

<00, vV, - [

2

)

2} v (23)

(THVT V), (U0, - [T+ V.0),,
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07 1/2
p)x

07 1/2
pim

< [rm),. W, -1y

SNARCAUR Ay

1/2 1/2
(T, T)p. (V. V) (U, U (24)
> (T, vy, (U Uy, —(T,U) (U, V) |+ ‘(T, U),, (U V),
> (T, V),,.| (U, U),,,
and
1 1/2 1/2
5 (D V2 (T V), [0, = (10, UV, 29
The proof follows from the corresponding inequalities above, namely (8), (9), (13)
and (18) applied for the nonnegative Hermitian form (-, ), ., € H, x # 0. The details

are omitted.

Remark 3.1. The inequality (25) can be written as

() (o))"
() (o)
) (o)

that holds for (Tt,...,T,), (Ui,...,U,), (Vi,...,V,) € B™ (H)\ {0}, p = (p1,...,0n) €
R and v € H.

+

If we take V; = T for j € {1,...,n} in (26), then we have

(o) (o)
o ows)
> <(zpm> > <(zpﬁ U> . >
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and since

<<; pjTjUj> xw> = <x (; pjTjUj>*:c> |
B <x (;w;@*) x> - <<;ij;7}f") m>

hence the inequality (27) can also be written as

n 1/2 n 1/2
S ((Somme) sy ((Snimr)en) 2

) (o)
)

If T; are normal operators for any j € {1,...,n}, then we get from (28) that

! K (Zp \le2) ”> ' < (ZPT> " x>

()
(o) (e

for any (Uy,...,U,) € B™ (H)\ {0} and x € H.
If U, are selfadjoint operators for any j € {1,...,n}, then we get from (27) that

(e (o))
(o) ()
(o) (o)

for any (T4, ..., T,) € B™ (H) \ {0} and x € H.

] (29)

>

Y

+

>

?
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Moreover, if U;T; = T;U; for any j € {1,...,n}, then we get from (30) the inequality

(Eomr)os) (Enme)a)”
< (%pﬁf) z, w> ] g (; ijj2> M>
((Zr0n)

for any (T, ...,T,) € B™ (H)\ {0}, (Uy,...,U,) selfadjoint operators and x € H.
In particular, if (71, ...,7,) are normal operators and (Uy, ..., U,) are selfadjoint op-
erators such that U;T; = T;U; for any j € {1,...,n}, then we get from (31) the simpler

inequality
()N

+

>

)

li(gom))
()

for any z € H.

>

Y

Remark 3.2. We notice that (32) is an operator version of de Bruijn inequality ob-
tained in 1960 in [1], which provides the following refinement of the Cauchy-Bunyakovsky-
Schwarz inequality:

n

E a;z;

i=1

n

2
D

i=1

2 n n
<33 [Z|zi|2+

i=1

] ; (33)

provided that a; are real numbers while z; are complex for each i € {1,...,n}.

For some inequalities in inner product spaces and operators on Hilbert spaces see
[4]-[26] and the references therein.

4. Applications for Functions of Normal Operators

Some important examples of power series with nonnegative coefficients are

1 o)
—_— = " D (0,1); 4
— =2 A\ AeD(01); (34)

n=0

1 <1
:§ N AeD(0,1);
1-A “=n , A€ D(0,1);

In
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=1
exp (A) =) —AL AEC
n=0

. _ S 1 2n+1 .
Slnh)\—nzzom)\ ,AE(C,

. 1 2n
COSh)\:ZW)\ ,)\GC.
n=0

Other important examples of functions as power series representations with nonnegative
coefficients are:

1 L+ _°° 1 oy '
2ln<1_/\) Z2n_1>\ . AeD(0,1); (35)
2n+1 .
Z\/_Qn+1 AN e D(0,1);
tanh™ ()\) = Z ﬁ)ﬁn 1, rebD (0, 1) )
n=1
T+ a)P(n+/)T(),,
2F1(O‘75a’77)‘>_; n|1—\(a)1—‘(ﬁ)l—\(n+7) A ,O(,B,’)/>O,
Ae D(0,1)

where I' is Gamma function.
We have the following result:

Theorem 4.1. Let f (2) := Z;io p;z’ be a power series with nonnegative coefficients
and convergent on the open disk D (0,R), R > 0. If T, U and V are normal operators
and V*T = TV*, U*T = TU*, V*U = UV*with | T||*, ||U|1*, |V|]* < R, then we have

the inequalities

%[<f(IT 2z, 2) 2 (V) 2 2) 4 [ (VT 2, 2] (36)
x (f (|U\ XD

2 |[(fUT)x,z) (f (V7U) , z)
for any x € H.

Proof. 1f we use the inequality (26) for powers of operators we have

(G (o)) e
(Ererm) ()

+
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(B erm)en) (o))

for any m > 1 and x € H.
Since T, U and V are normal operators and V*T =TV* U*T =TU*, V*U =UV"*,
hence from (37) we have

" 1/2 m 1/2
[(Erm)ee) (e}

>

I

Eom) (5o
(S (o))

for any m > 1 and x € H.
Since all the series whose partial sums are involved in the inequality (38) are con-
vergent hence by letting m — oo in (38) we get (36). O

Corollary 4.1. Let f (z) := 372 p;2’ be a power series with nonnegative coefficients
and convergent on the open disk D (0, R), R > 0. If T and U are normal operators and
U*T = TU*, TU = UT with ||T|*,||U||* < R, then we have the inequalities
1
5 [ ATF) 22) + [(F (T%) 2 2) [} (T (UF) 2, 2) (39)
> |(f(UT)z,z) (f (TU) z, )]

forany x € H, v # 0.
In particular, if T is normal and U is selfadjoint with TU = UT and ||T||*,||U|)* <
R, then

3 QTP 22+ [ (7)) ] (F (U) w0) 2 | (T2} (40)
for any x € H.

In order to provide various examples of interesting inequalities we use (40) for some

fundamental functions.
If T is normal and U is selfadjoint with TU = UT with ||T]|,||U|| < 1, then

1

(=107 ) + {72 ) [ (- 09 )
> (= TU) 0,2

and

[ln <(1H - |T|2)_1 x, :v> + ‘<1n (g — T2)71 x, :L’>H (42)

N | —
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X <ln (1H — U2)71m,a7>

> [{In(1g —TU)™! x,x>‘2

for any x € H.
If T" is normal and U is selfadjoint with TU = UT, then
1
5 [{exp (|T|2) z,z) + |(exp (T?) z,z)|] (exp (U?) z, z) (43)
> [{exp (TU) @, 2)[",
% [(sinh (|T|2) z,x) + |(sinh (%) z, z)|] (sinh (U?) z, z) (44)
> |(sinh (TU) z, z)|*
and
% [{cosh (|T|2) z,x) + |(cosh (T?) z,z)|] (cosh (U?) z, x) (45)
> |(cosh (TU) z, )|
for any x € H.

5. Norm and Numerical Radius Inequalities

The numerical radius w (T') of an operator T' on H is given by [27, p. 8]:
w(T) = sup {|Al, A € W(T)} = sup {|(Tz, 2)], [|=f| = 1} (46)

It is well known that w () is a norm on the Banach algebra B (H) of all bounded linear
operators 1" : H — H. This norm is equivalent with the operator norm. In fact, the
following more precise result holds [27, p. 9]:

Theorem 5.1 (Equivalent norm). For any T € B(H) one has
w(T) < |T] < 2 (). (47)
We recall also that if 7" is normal operator, then w (T') = || T|| .

For a survey of recent inequalities for numerical radius, see [21] and the references
therein.

Theorem 5.2. Let (T3, ..., T,,) € B™ (H)\ {0}, p = (p1, ..., pn) € RY and (Uy, ..., U,)
be selfadjoint operators such that U;T; = T;U; for any j € {1,...,n}. Then we have the
inequality

n 1 n
n 12 » 1/2 n
< 1D p 1Ty > T+ > pT?
j=1 j=1 j=1
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Proof. Taking the supremum over ||z|| = 1 in the inequality (31) and using its properties

((Ss00m) )
i <(§pj'T') > <<ZPT>x>/
< <(Zw| > <<Zw>>/

However, we have
1/2
2
> a:,m> (50)

e < (ZP 'Tj'g) >/ < (ZP v
Mg
<o [{(Sonimp) o) {(Snimr) )
)

2

(49)

sup
[[=]|=1

+

< sup

llzll=1

1/2 n
ij |:ij2> xw> <<ij T
—1 j=1

(¢

(57)-

oo {(Eore)) (o
(5

+ sup
l[=]|=1

+ sup
[[=]|=1
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Since

<(zpjsz) > _sonee],
j=1
sup <<Zp¢ |Tj|2> xw> =D _p 1T

S w1l
j=1

1/2

)

1/2

sup
ll=l|=1

)

j=1 j=1
hence by (49) and (50) we get the desired result (48). O

Remark 5.1. If we take U; = a;1y with j € {1,...,n} where a; € R, j € {1,...,n},
then we get from (48)

n 1 n
w? (ijajT]) < 5 ijcﬁ (51)
j=1 j=1
n 1/2 n 1/2 n
2 w2
< (I pmlP| X p |+ | e
j=1 j=1 j=1

for any (T4, ..., T,)) € B™ (H)\ {0} and p = (p1,...,pn) € R*™ and, in particular,
n 1 n
j=1 j=1
n 20 o, 1/2 n
2 x| 2
|| || |
j=1 j=1 j=1
Moreover, if T; are normal operators for any j € {1,...,n}, then we have
(o) <3S |Sme| | e
j=1 j=1 j=1 j=1

6. The Case for One and Two Operators

If we write the inequality (26) for p; =1, j € {1,...,n}, then we get

1 n 1/2 n 1/2
[l (o) -
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((rm) = [{B5r) =)
((om) ) () ==))

that holds for (T1, ..., T, , (U1, ....,U,), (Vi,..., V) € B™ (H)\ {0} and = € H.
If we write this inequality for n = 1 we get

+

>

1 1/2 1/2 .
5 [<|T|2x,x> <]V|2 zx)y TV Tx,x>|] <|U|2x,m> (55)
> [{((UT)z,z) (V'U) z,2)]
that holds for any T, U,V € B(H) and z € H.
If we take V' = T™ in (55), then we get
1 1/2 . 1/2
5 [<|T|2x,x> <\T |2x,x> + |<T2x,x>|} <|U|2x,x> (56)
> ((UT) z,2) ((TU) z, z)|,
that holds for any 7,U € B(H) and x € H.
In particular, if 7" is normal, then from (56) we have
1
— [<|T!2 a:,x> + ‘<T2x,x>u <]U|2x,x> > ((UT)x,z) ((TU) z, )|, (57)
2
for any U € B(H) and z € H.
Also, if U is selfadjoint, then from (56) we have
1 1/2 /0 1/2
5 [<|T|2m,x> <|T |2m,m> + |<T2x,x>|} <U2x,x> (58)
> {((UT) z,z) (TU) z, x)|,

for any '€ B(H) and x € H.

Moreover, if U is selfadjoint and commuting with T € B(H), then we have from
(58)
1 1/2 . 1/2
5 [P 2.2) " (TP 22) " + [(T20,2)| | (U%2,2) = [((T0) @, 2), (59)
for any x € H.
If we take the supremum over ||z|| =1 in (59), then we get

w? (TU) = sup [((TU)z, )"

flzf|=1

< % ‘sup { [<|T|2 m,x>1/2 <|T*|2 x, x>1/2 + [(T?z, a:>u <U2x,x>}

|z[[=1

< % lsup (T x,m>1/2 sup (|77 x,x>1/2 + sup ‘<T2x,x>‘]
Jall=1 Jall=1 21
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X sup <U2w, x>
lzll=1

_ % T)1? +w (T2)] U2

since
1/2 1/2 1/2
sup {IT*,)"™ = [w (1)) = TP = 71,
sup (|7 a) " = [w ()] = TP = 1) = 1)
and
HSI||1£)1 (Uz,z) = ||U?|| = 1U|?.
Therefore we get
1
w? (TU) < 5 (|71 +w (72)] U, (60)

for any T' € B(H) and U a selfadjoint operator that commutes with 7.
If we take U = I in (60), then we get the sharp inequality

w? (1) < 2 [T 4w (7°)] (61)

that has been firstly obtained in 2007 in [13].
If we write the inequality (54) for n = 2 we get

[T + 1T 2,0) 2 (WA + 1P 2] (62
+ (VT + Vs To) z, )] {(JUL]* + |Ua]?) @, 7)
> [((UFTy + U Ta) ) (ViUs + Vi), )],

for any (71, ), (Uy,Us), (V1,Ve) € B (H) and = € H.
If we take T' = (A, B) and V = (B*,£A") in (62), where A, B € B(H), then we
have

N —

[MM”HM5%@W«BW+PN5x@WI (63)
|((BA+ AB) z, ) <(|U1| + |Us| ) >

+
> [{((Uf A+ Uy B) w, ) (BUy £ AUs) @, )],

for any (Uy,Us) € B® (H) and z € H.
If we take in this inequality U; = B and Us; = A, then we get

3 [COAP + 1B 2,02 (1B +147) )] (64)
+[((BA+ AB)z,2)[] {(|A]> + |B|?) =, =)
> |[((B*"A+ A*B) z,z) {(B* £ A%) z,7)|,
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for any A, B € B(H). Moreover, if we take in this inequality B = A*, then we get
1 2 * |2
L (AR +14°) 5.2)]. (69

F (A A — AA") 2, 2)|] ((JAP + |A*]?) =, @)
> (42 4+ (A7) 2.2) (A7) = 4%) 2,2)]

for any A e B(H).
If we take Vo = T and Vi = T, then we get from (62) that

(T + 1) 2, 2) + [(T3Ty + T 1) o, )| ((|UL P + | Ue]?) 2, 2)  (66)
(U + UsTy) x,x) (TyUy + 1Y Us) x, o)

for any (T1,Ty), (Uy,Us) € B (H) and z € H.
If we take Vo = T3 and V; = T then we get from (62) that

S [T + 1T 2, 0) 2 (2 17517) )] (67
+ ‘< T2—1-T2 :L‘ $>H <(|U1 + \U2|2) x,x>
Z |<(U1T1 + U2T2) JZ,ZE) <(T2U1 + TlUQ) JZ,ZL‘>| s

for any (11, T3), (Uy,Us) € B? (H) and x € H.

One can state other particular inequalities by taking specific values for (77,75),
(U1, Usy) . The details are however omitted.
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