Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Imdat İşcan ${ }^{a}$ and Sercan Turhan ${ }^{b}$

Abstract

In this paper, we give a new identity for differentiable and GA-convex functions. As a result of this identity, we obtain some new fractional integral inequalities for differentiable GA-convex functions.

2010 Mathematics Subject Classification. Primary 26D15; Secondary 26A51, Third 26D10, Fourth 26A15.
Key words and phrases. GA-convex, Hermite-Hadamard-Fejer type inequalities, Fractional Integral.

1. Introduction

The classical or the usual convexity is defined as follows:
A function $f: \emptyset \neq I \subseteq \mathbb{R} \longrightarrow \mathbb{R}$, is said to be convex on I if the inequality

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

holds for all $x, y \in I$ and $t \in[0,1]$.
A number of papers have been written on inequalities using the classical convexity and one of the most fascinating inequalities in mathematical analysis is stated as

[^0]©The Author(s) 2016. This article is published with open access by Sidi Mohamed Ben Abdallah University

[^1]follows:
\[

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

\]

where $f: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be a convex mapping and $a, b \in I$ with $a<b$. Both the inequalities in (1) hold in reversed direction if f is concave. The inequalities stated in (1) are known as Hermite-Hadamard inequalities.

For more results on (1) which provide new proof, significant extensions, generalizations, refinements, counterparts, new Hermite-Hadamard-type inequalities and numerous applications, we refer the interested reader to [1]-[5],[7, 11, 12, 14] and the references therein.

The usual notion of convex functions have been generalized in diverse manners. One of them is called GA-convex functions and is stated in the definition below.

Definition 1.1. $[11,12] A$ function $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \longrightarrow \mathbb{R}$ is said to be $G A$-convex function on I if

$$
f\left(x^{\lambda} y^{1-\lambda}\right) \leq \lambda f(x)+(1-\lambda) f(y)
$$

holds for all $x, y \in I$ and $\lambda \in[0,1]$, where $x^{\lambda} y^{1-\lambda}$ and $\lambda f(x)+(1-\lambda) f(y)$ are respectively the weighted geometric mean of two positive numbers x and y and the weighted arithmetic mean of $f(x)$ and $f(y)$.

The definition of GA-convexity is further generalized as GA-s-convexity in the second sense as follows.

Definition 1.2. [14] A function $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \longrightarrow \mathbb{R}$ is said to be $G A$-s-convex function on I if

$$
f\left(x^{\lambda} y^{1-\lambda}\right) \leq \lambda^{s} f(x)+(1-\lambda)^{s} f(y)
$$

holds for all $x, y \in I$ and $\lambda \in[0,1]$ and for some $s \in(0,1]$.
For the properties of GA-convex functions and GA-s-convex function, we refer the reader to $[6,9,10,14,15,16]$ and the references therein.

Most recently, a number of findings have been seen on Hermite-Hadamard type integral inequalities for GA-convex and for GA-s-convex functions.

Zhang et all. in [15] established the following Hermite-Hadamard type integral inequalities for GA-convex function.

Theorem 1.1. [15] Let $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \rightarrow \mathbb{R}$ be differentiable on I°, and $a, b \in I$ with $a<b$ and $f^{\prime} \in L[a, b]$. If $\left|f^{\prime}\right|^{q}$ is $G A$-convex on $[a, b]$ for $q \geq 1$, then

$$
\begin{align*}
& \quad\left|b f(b)-a f(a)-\int_{a}^{b} f(x) d x\right| \leq \frac{[(b-a) A(a, b)]^{1-1 / q}}{2^{1 / q}} \tag{2}\\
& \times\left\{\left[L\left(a^{2}, b^{2}\right)-a^{2}\right]\left|f^{\prime}(a)\right|^{q}+\left[b^{2}-L\left(a^{2}, b^{2}\right)\right]\left|f^{\prime}(b)\right|^{q}\right\}^{1 / q} .
\end{align*}
$$

Theorem 1.2. [15] Let $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \rightarrow \mathbb{R}$ be differentiable on I°, and $a, b \in I$ with $a<b$ and $f^{\prime} \in L[a, b]$. If $\left|f^{\prime}\right|^{q}$ is $G A$-convex on $[a, b]$ for $q>1$, then

$$
\begin{gather*}
\left|b f(b)-a f(a)-\int_{a}^{b} f(x) d x\right| \leq(\ln b-\ln a) \tag{3}\\
\times\left[L\left(a^{2 q /(q-1)}, b^{2 q /(q-1)}\right)-a^{2 q /(q-1)}\right]^{1-1 / q}\left[A\left(\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right)\right]^{1 / q} .
\end{gather*}
$$

Theorem 1.3. [15] Let $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \rightarrow \mathbb{R}$ be differentiable on I°, and $a, b \in I$ with $a<b$ and $f^{\prime} \in L[a, b]$. If $\left|f^{\prime}\right|^{q}$ is $G A$-convex on $[a, b]$ for $q>1$ and $2 q>p>0$, then

$$
\begin{align*}
& \left|b f(b)-a f(a)-\int_{a}^{b} f(x) d x\right| \leq \frac{(\ln b-\ln a)^{1-1 / q}}{p^{1 / q}} \tag{4}\\
& \times\left[L\left(a^{(2 q-p) /(q-1)}, b^{(2 q-p) /(q-1)}\right)\right]^{1-1 / q} \\
& \times\left\{\left[L\left(a^{p}, b^{p}\right)-a^{p}\right]\left|f^{\prime}(a)\right|^{q}+\left[b^{p}-L\left(a^{p}, b^{p}\right)\right]\left|f^{\prime}(b)\right|^{q}\right\}^{1 / q} .
\end{align*}
$$

Theorem 1.4. [6] Suppose that $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \longrightarrow \mathbb{R}$ is GA-s-convex function in the second sense, where $s \in[0,1)$ and let $a, b \in[0, \infty)$, $a<b$. If $f \in L[a, b]$, then the following inequalities hold

$$
\begin{equation*}
2^{s-1} f(\sqrt{a b}) \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(x)}{x} d x \leq \frac{f(a)+f(b)}{s+1} \tag{5}
\end{equation*}
$$

the constant $k=\frac{1}{s+1}$ is the best possible in the second inequality in (1).
If f is GA-convex function in Theorem 4, then we get the following inequalities

$$
\begin{equation*}
f(\sqrt{a b}) \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(x)}{x} d x \leq \frac{f(a)+f(b)}{2} \tag{6}
\end{equation*}
$$

For more results on GA-convex function and GA-s-convex function see e.g [6, 9, 14].
Definition 1.3. [9] A function $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \longrightarrow \mathbb{R}$ is said to be geometrically symmetric with respect to $\sqrt{a b}$ if the inequality

$$
g\left(\frac{a b}{x}\right)=g(x)
$$

holds for all $x \in[a, b]$.
Definition 1.4. [8] Let $f \in L[a, b]$. The right-hand side and left-hand side Hadamard fractional integrals $J_{a^{+}}^{\alpha} f$ and $J_{b^{-}}^{\alpha} f$ of order $\alpha>0$ with $b>a \geq 0$ are defined by

$$
J_{a^{+}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(\ln \frac{x}{t}\right)^{\alpha-1} f(t) \frac{d t}{t}, x>a
$$

$$
J_{b^{-}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}\left(\ln \frac{t}{x}\right)^{\alpha-1} f(t) \frac{d t}{t}, x<b
$$

respectively where $\Gamma(\alpha)$ is the Gamma function defined by $\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} t^{\alpha-1} d t$ and $J_{a^{+}}^{0} f(x)=J_{b^{-}}^{0} f(x)=f(x)$.
Lemma 1.1. [13] For $0<\theta \leq 1$ and $0 \leq a<b$ we have

$$
\left|a^{\theta}-b^{\theta}\right| \leq(b-a)^{\theta} .
$$

In [4], D. Y. Hwang established a new identity for convex functions. In this study, we will prove a similar identity and will obtain Hermite-Hadamard-Fejér inequality for GA-convex functions via fractional integrals based on this new identity.

2. Main Results

Throughout in this section, we will use the notations $L(t)=a^{t} G^{1-t}, U(t)=b^{t} G^{1-t}$ and $G=G(a, b)=\sqrt{a b}$.

Lemma 2.1. Let $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \longrightarrow \mathbb{R}$ be a differentiable function on $I^{o}, a, b \in$ I^{o} with $a<b$. If $h:[a, b] \longrightarrow[0, \infty)$ is a differentiable function and $f^{\prime} \in L([a, b])$, the following inequality holds:

$$
\begin{align*}
& {[h(b)-2 h(a)] \frac{f(a)}{2}+h(b) \frac{f(b)}{2}-\int_{a}^{b} f(x) h^{\prime}(x) d x } \tag{7}\\
&= \frac{\ln b-\ln a}{4}\left\{\int_{0}^{1}\left[2 h\left(a^{t} G^{1-t}\right)-h(b)\right] f^{\prime}\left(a^{t} G^{1-t}\right) a^{t} G^{1-t} d t\right. \\
&\left.+\int_{0}^{1}\left[2 h\left(b^{t} G^{1-t}\right)-h(b)\right] f^{\prime}\left(b^{t} G^{1-t}\right) b^{t} G^{1-t} d t\right\}
\end{align*}
$$

Proof. We calculate the integrals on the right side of (7), as follows

$$
\begin{aligned}
I_{1} & =\int_{0}^{1}\left[2 h\left(a^{t} G^{1-t}\right)-h(b)\right] d\left(f\left(a^{t} G^{1-t}\right)\right) \\
& =\left.\left[2 h\left(a^{t} G^{1-t}\right)-h(b)\right] f\left(a^{t} G^{1-t}\right)\right|_{0} ^{1} \\
& -2 \ln \left(\frac{a}{G}\right) \int_{0}^{1} f\left(a^{t} G^{1-t}\right) h^{\prime}\left(a^{t} G^{1-t}\right) a^{t} G^{1-t} d t
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2} & =\int_{0}^{1}\left[2 h\left(b^{t} G^{1-t}\right)-h(b)\right] d\left(f\left(b^{t} G^{1-t}\right)\right) \\
& =\left.\left[2 h\left(b^{t} G^{1-t}\right)-h(b)\right] f\left(b^{t} G^{1-t}\right)\right|_{0} ^{1} \\
& -2 \ln \left(\frac{b}{G}\right) \int_{0}^{1} f\left(b^{t} G^{1-t}\right) h^{\prime}\left(b^{t} G^{1-t}\right) b^{t} G^{1-t} d t
\end{aligned}
$$

Therefore

$$
\begin{align*}
\frac{I_{1}+I_{2}}{2}= & {[h(b)-2 h(a)] \frac{f(a)}{2}+h(b) \frac{f(b)}{2} } \tag{8}\\
- & \frac{\ln b-\ln a}{2}
\end{align*} \begin{array}{r}
\int_{0}^{1} f\left(a^{t} G^{1-t}\right) h^{\prime}\left(a^{t} G^{1-t}\right) a^{t} G^{1-t} d t \\
\\
\end{array}
$$

This completes the proof of the lemma.
Theorem 2.1. Let $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \longrightarrow \mathbb{R}$ be differentiable function on I^{o} and $a, b \in I^{o}$ with $a<b$. If $h:[a, b] \longrightarrow[0, \infty)$ is a differentiable function and $\left|f^{\prime}\right|$ is GA-convex on $[a, b]$, the following inequality holds

$$
\begin{align*}
& \left|[h(b)-2 h(a)] \frac{f(a)}{2}+h(b) \frac{f(b)}{2}-\int_{a}^{b} f(x) h^{\prime}(x) d x\right| \tag{9}\\
& \leq \frac{\ln b-\ln a}{4}\left[\zeta_{1}(a, b)\left|f^{\prime}(a)\right|+\zeta_{2}(a, b)\left|f^{\prime}(G)\right|+\zeta_{3}(a, b)\left|f^{\prime}(b)\right|\right]
\end{align*}
$$

where

$$
\begin{align*}
& \zeta_{1}(a, b)=\int_{0}^{1} t a^{t} G^{1-t}\left|2 h\left(a^{t} G^{1-t}\right)-h(b)\right| d t \tag{10}\\
& \zeta_{2}(a, b)=\int_{0}^{1}(1-t) a^{t} G^{1-t}\left|2 h\left(a^{t} G^{1-t}\right)-h(b)\right| d t \tag{11}
\end{align*}
$$

$$
\begin{aligned}
+ & \int_{0}^{1}(1-t) b^{t} G^{1-t}\left|2 h\left(b^{t} G^{1-t}\right)-h(b)\right| d t \\
\zeta_{3}(a, b) & =\int_{0}^{1} t b^{t} G^{1-t}\left|2 h\left(b^{t} G^{1-t}\right)-h(b)\right| d t
\end{aligned}
$$

and
Proof. We get the following inequality by taking the absolute value on both sides of the equality in (7):

$$
\begin{align*}
& \left|[h(b)-2 h(a)] \frac{f(a)}{2}+h(b) \frac{f(b)}{2}-\int_{a}^{b} f(x) h^{\prime}(x) d x\right| \tag{12}\\
\leq & \frac{\ln b-\ln a}{4}\left\{\int_{0}^{1}\left|2 h\left(a^{t} G^{1-t}\right)-h(b)\right|\left|f^{\prime}\left(a^{t} G^{1-t}\right) a^{t} G^{1-t}\right| d t\right. \\
& \left.+\int_{0}^{1}\left|2 h\left(b^{t} G^{1-t}\right)-h(b)\right|\left|f^{\prime}\left(b^{t} G^{1-t}\right) b^{t} G^{1-t}\right| d t\right\}
\end{align*}
$$

Since $\left|f^{\prime}\right|$ is GA-convex on $[a, b]$ in (12), we have for all $t \in[a, b]$ that

$$
\begin{align*}
& \left|[h(b)-2 h(a)] \frac{f(a)}{2}+h(b) \frac{f(b)}{2}-\int_{a}^{b} f(x) h^{\prime}(x) d x\right| \tag{13}\\
\leq & \frac{\ln b-\ln a}{4}\left\{\int_{0}^{1}\left|2 h\left(a^{t} G^{1-t}\right)-h(b)\right|\left[t\left|f^{\prime}(a)\right|+(1-t)\left|f^{\prime}(G)\right|\right] a^{t} G^{1-t} d t\right. \\
& \left.+\int_{0}^{1}\left|2 h\left(b^{t} G^{1-t}\right)-h(b)\right|\left[t\left|f^{\prime}(b)\right|+(1-t)\left|f^{\prime}(G)\right|\right] b^{t} G^{1-t} d t\right\}
\end{align*}
$$

This completes the proof of the theorem.
Corollary 2.1. Suppose that $g:[a, b] \longrightarrow[0, \infty)$ is a continuous positive mapping and geometrically symmetric with respect to $\sqrt{a b}$ (i.e. $g\left(\frac{a b}{x}\right)=g(x)$ holds for all $x \in[a, b]$ with $a<b$). Choosing $h(x)=\int_{a}^{x}\left[\left(\ln \frac{b}{t}\right)^{\alpha-1}+\left(\ln \frac{t}{a}\right)^{\alpha-1}\right] \frac{g(t)}{t} d t$ for all $x \in[a, b]$ and $\alpha>0$ in Theorem 5, we obtain

$$
\begin{equation*}
\left|\left(\frac{f(a)+f(b)}{2}\right)\left[J_{a^{+}}^{\alpha} g(b)+J_{b^{-}}^{\alpha} g(a)\right]-\left[J_{a^{+}}^{\alpha}(f g)(b)+J_{b^{-}}^{\alpha}(f g)(a)\right]\right| \tag{14}
\end{equation*}
$$

$$
\leq \frac{(\ln b-\ln a)^{\alpha+1}}{2^{\alpha+1} \Gamma(\alpha+1)}\|g\|_{\infty}\left[C_{1}(\alpha)\left|f^{\prime}(a)\right|+C_{2}(\alpha)\left|f^{\prime}(G)\right|+C_{3}(\alpha)\left|f^{\prime}(b)\right|\right]
$$

where

$$
\begin{aligned}
& C_{1}(\alpha)=\int_{0}^{1}\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] t a^{t} G^{1-t} d t \\
& C_{2}(\alpha)=\int_{0}^{1}(1-t)\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right]\left[a^{t} G^{1-t}+b^{t} G^{1-t}\right] d t
\end{aligned}
$$

and

$$
C_{3}(\alpha)=\int_{0}^{1}\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] t b^{t} G^{1-t} d t .
$$

Specially, if we use Lemma 1 in (14), for $0<\alpha \leq 1$, we have

$$
\begin{align*}
& \left|\left(\frac{f(a)+f(b)}{2}\right)\left[J_{a^{+}}^{\alpha} g(b)+J_{b^{-}}^{\alpha} g(a)\right]-\left[J_{a^{+}}^{\alpha}(f g)(b)+J_{b^{-}}^{\alpha}(f g)(a)\right]\right| \tag{15}\\
\leq & \frac{(\ln b-\ln a)^{\alpha+1}}{2 \Gamma(\alpha+1)}\|g\|_{\infty}\left[D_{1}(\alpha)\left|f^{\prime}(a)\right|+D_{2}(\alpha)\left|f^{\prime}(G)\right|+D_{3}(\alpha)\left|f^{\prime}(b)\right|\right]
\end{align*}
$$

where

$$
\begin{aligned}
& D_{1}(\alpha)=\int_{0}^{1} t^{\alpha+1} a^{t} G^{1-t} \\
& D_{2}(\alpha)=\int_{0}^{1}\left[(1-t) t^{\alpha} a^{t} G^{1-t}+(1-t) t^{\alpha} b^{t} G^{1-t}\right] d t
\end{aligned}
$$

and

$$
D_{3}(\alpha)=\int_{0}^{1} t^{\alpha+1} b^{t} G^{1-t}
$$

Proof. If we take $h(x)=\int_{a}^{x}\left[\left(\ln \frac{b}{t}\right)^{\alpha-1}+\left(\ln \frac{t}{a}\right)^{\alpha-1}\right] \frac{g(t)}{t} d t$ for all $x \in[a, b]$ in the inequality (9), we have

$$
\begin{equation*}
\left|\Gamma(\alpha)\left(\frac{f(a)+f(b)}{2}\right)\left[J_{a^{+}}^{\alpha} g(b)+J_{b^{-}}^{\alpha} g(a)\right]-\Gamma(\alpha)\left[J_{a^{+}}^{\alpha}(f g)(b)+J_{b^{-}}^{\alpha}(f g)(a)\right]\right| \tag{16}
\end{equation*}
$$

$$
\begin{aligned}
\leq \frac{\ln b-\ln a}{4}\left\{\left.\begin{array}{l}
\int_{0}^{1}\left|\begin{array}{c}
2 \int_{a}^{a^{t} G^{1-t}}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x \\
-\int_{a}^{b}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x \\
\times\left[t\left|f^{\prime}(a)\right|+(1-t)\left|f^{\prime}(G)\right|\right] a^{t} G^{1-t} d t
\end{array}\right| \\
+\int_{0}^{1} \left\lvert\, \begin{array}{c}
\int_{a}^{a}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x \\
-\int_{a}^{b}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x \\
\times\left[t\left|f^{\prime}(b)\right|+(1-t)\left|f^{\prime}(G)\right|\right] b^{t} G^{1-t} d t
\end{array}\right.
\end{array} \right\rvert\,\right.
\end{aligned}
$$

Since $g(x)$ is geometrically symmetric with respect to $x=\sqrt{a b}$, we have

$$
\begin{align*}
& \left\lvert\, 2 \int_{a}^{a^{t} G^{1-t}}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x\right. \tag{17}\\
- & \left.\int_{a}^{b}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x \right\rvert\, \\
= & \left|\int_{a^{t}}^{b^{1}} \int_{G^{1-t}}^{G^{1-t}}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x\right|
\end{align*}
$$

and

$$
\begin{align*}
& \left\lvert\, 2 \int_{a}^{b^{t} G^{1-t}}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x\right. \tag{18}\\
- & \left.\int_{a}^{b}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x \right\rvert\, \\
= & \left|\int_{a^{t} G^{1-t}}^{b^{t} G^{1-t}}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x\right| .
\end{align*}
$$

for all $t \in[0,1]$. By using (17)-(18) in (16), we have

$$
\begin{equation*}
\left|\left(\frac{f(a)+f(b)}{2}\right)\left[J_{a^{+}}^{\alpha} g(b)+J_{b^{-}}^{\alpha} g(a)\right]-\left[J_{a^{+}}^{\alpha}(f g)(b)+J_{b^{-}}^{\alpha}(f g)(a)\right]\right| \tag{19}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \frac{\ln b-\ln a}{4 \Gamma(\alpha)}\left\{\begin{array}{l}
\left.\int_{0}^{1} \int_{a^{t} G^{1-t}}^{b^{t} G^{1-t}}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{g(x)}{x} d x \right\rvert\, \\
\times\left[t\left|f^{\prime}(a)\right|+(1-t)\left|f^{\prime}(G)\right|\right] a^{t} G^{1-t} d t
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\ln b-\ln a}{4 \Gamma(\alpha)}\|g\|_{\infty}\left\{\begin{array}{l}
\int_{0}^{1} \int_{0}^{\left[\int_{a^{t} G^{1-t}}^{b^{t} G^{1-t}}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{1}{x} d x\right]} \times\left[t\left|f^{\prime}(a)\right|+(1-t)\left|f^{\prime}(G)\right|\right] a^{t} G^{1-t} d t
\end{array}\right. \\
& \left.+\int_{0}^{1} \int_{a^{t} G^{1-t}}^{\left.\left[\begin{array}{ll}
b^{t} G^{1-t}
\end{array}\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{1}{x} d x\right]} \begin{array}{l}
\times\left[t\left|f^{\prime}(b)\right|+(1-t)\left|f^{\prime}(G)\right|\right] b^{t} G^{1-t} d t
\end{array}\right\} .
\end{aligned}
$$

In the last inequality, we calculate integrals simply as follows:

$$
\begin{align*}
& \int_{a^{t} G^{1-t}}^{b^{t} G^{1-t}}\left[\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{1}{x} d x \tag{20}\\
= & \int_{a^{t} G^{1-t}}^{b^{t} G^{1-t}}\left(\ln \frac{b}{x}\right)^{\alpha-1} \frac{1}{x} d x+\int_{a^{t} G^{1-t}}^{b^{t} G^{1-t}}\left(\ln \frac{x}{a}\right)^{\alpha-1} \frac{1}{x} d x \\
= & \frac{2 \cdot(\ln b-\ln a)^{\alpha}}{2^{\alpha} \cdot \alpha}\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] .
\end{align*}
$$

By Lemma 1, for $0<\alpha \leq 1$, we have

$$
\begin{aligned}
& \int_{a^{t} t}^{b^{1-t}} \\
= & \left.\left.\int_{a^{t} G^{1-t}}^{b^{t} G^{1-t}}\left(\ln \frac{b}{x}\right)^{\alpha-1}+\left(\ln \frac{x}{a}\right)^{\alpha-1}\right] \frac{1}{x}\right)^{\alpha-1} \frac{1}{x} d x+\int_{a^{t} G^{1-t}}^{b^{t} G^{1-t}}\left(\ln \frac{x}{a}\right)^{\alpha-1} \frac{1}{x} d x \\
& \leq \frac{2 \cdot(\ln b-\ln a)^{\alpha}}{\alpha} t^{\alpha} .
\end{aligned}
$$

A combination of (19) and (20), we have (14) and (15). Thus the proof is completed.

Corollary 2.2. (1)If we take $\alpha=1$, we obtain the following Hermite-Hadamard-Fejer type inequality for GA-convex functions related to (15):

$$
\begin{align*}
& \left|\left[\frac{f(a)+f(b)}{2}\right] \int_{a}^{b} \frac{g(x)}{x} d x-\int_{a}^{b} f(x) \frac{g(x)}{x} d x\right| \tag{21}\\
\leq & \frac{(\ln b-\ln a)^{2}}{4}\|g\|_{\infty}\left[D_{1}(1)\left|f^{\prime}(a)\right|+D_{2}(1)\left|f^{\prime}(G)\right|+D_{3}(1)\left|f^{\prime}(b)\right|\right]
\end{align*}
$$

where for $a, b>0$, we have

$$
\begin{aligned}
D_{1}(1) & =\int_{0}^{1} t^{2} a^{t} G^{1-t} d t=\frac{2}{\ln b-\ln a}\left\{-a-\frac{4 a}{\ln b-\ln a}-\frac{8 a-8 G}{(\ln b-\ln a)^{2}}\right\} \\
D_{2}(1) & =\int_{0}^{1} t(1-t) a^{t} G^{1-t} d t+\int_{0}^{1} t(1-t) b^{t} G^{1-t} d t \\
& =\frac{2}{\ln b-\ln a}\left\{\frac{2(a+b+2 G)}{\ln b-\ln a}+\frac{8(a-b)}{(\ln b-\ln a)^{2}}\right\} \\
D_{3}(1) & =\int_{0}^{1} t^{2} a^{t} G^{1-t} d t=\frac{2}{\ln b-\ln a}\left\{b-\frac{4 b}{\ln b-\ln a}+\frac{8 b-8 G}{(\ln b-\ln a)^{2}}\right\} .
\end{aligned}
$$

(2)If we take $g(x)=1$ in (14), we obtain the following inequality

$$
\begin{align*}
& \left|\left(\frac{f(a)+f(b)}{2}\right)-\frac{\Gamma(\alpha+1)}{2(\ln b-\ln a)^{\alpha}}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right]\right| \tag{22}\\
& \leq \frac{(\ln b-\ln a)}{2^{\alpha+2}}\left[C_{1}(\alpha)\left|f^{\prime}(a)\right|+C_{2}(\alpha)\left|f^{\prime}(G)\right|+C_{3}(\alpha)\left|f^{\prime}(b)\right|\right], \quad \alpha>0 .
\end{align*}
$$

(3)If we take $g(x)=1$ and $\alpha=1$ in (15), we obtain the following inequality

$$
\begin{align*}
& \left|\left(\frac{f(a)+f(b)}{2}\right)-\frac{1}{(\ln b-\ln a)} \int_{a}^{b} \frac{f(x)}{x} d x\right| \tag{23}\\
\leq & \frac{(\ln b-\ln a)}{4}\left[D_{1}(1)\left|f^{\prime}(a)\right|+D_{2}(1)\left|f^{\prime}(G)\right|+D_{3}(1)\left|f^{\prime}(b)\right|\right]
\end{align*}
$$

Theorem 2.2. Let $f: I \subseteq \mathbb{R}_{+}=(0, \infty) \longrightarrow \mathbb{R}$ be a differentiable function on I^{o}, $a, b \in I^{o}$ with $a<b$. If $h:[a, b] \longrightarrow[0, \infty)$ is a differentiable function and $\left|f^{\prime}\right|^{q}$ is GA-convex on $[a, b]$ for $q \geq 1$, the following inequality holds

$$
\begin{equation*}
\left|[h(b)-2 h(a)] \frac{f(a)}{2}+h(b) \frac{f(b)}{2}-\int_{a}^{b} f(x) h^{\prime}(x) d x\right| \tag{24}
\end{equation*}
$$

$$
\begin{gathered}
\leq \frac{\ln b-\ln a}{4}\left\{\begin{array}{c}
\left(\int_{0}^{1}\left|2 h\left(a^{t} G^{1-t}\right)-h(b)\right| d t\right)^{1-\frac{1}{q}} \\
\times\left(\left|2 h\left(a^{t} G^{1-t}\right)-h(b)\right| d t\right) \\
\times\left(\int_{0}^{1}\left(t a^{q t} G^{q(1-t)}\left|f^{\prime}(a)\right|^{q}+(1-t) a^{q t} G^{q(1-t)}\left|f^{\prime}(G)\right|^{q}\right)\right)^{\frac{1}{q}} \\
+\left(\int_{0}^{1}\left|2 h\left(b^{t} G^{1-t}\right)-h(b)\right| d t\right)^{1-\frac{1}{q}} \\
\left(\left|2 h\left(b^{t} G^{1-t}\right)-h(b)\right| d t\right) \times \\
\times\left(\int_{0}^{1}\left(t b^{q t} G^{q(1-t)}\left|f^{\prime}(b)\right|^{q}+(1-t) b^{q t} G^{q(1-t)}\left|f^{\prime}(G)\right|^{q}\right)\right)^{\frac{1}{q}}
\end{array}\right\} .
\end{gathered}
$$

Proof. Continuing from (13) in proof of Theorem 5, the power mean inequality and using the fact that $\left|f^{\prime}\right|^{q}$ is GA-convex on $[a, b]$, we get the required result. This completes the proof of the theorem.
Corollary 2.3. Let $g:[a, b] \longrightarrow[0, \infty)$ be a positive continuous mapping and geometrically symmetric with respect to $\sqrt{a b}$ (i.e. $g\left(\frac{a b}{x}\right)=g(x)$ holds for all $x \in[a, b]$ with $a<b)$. If $h(x)=\int_{a}^{x}\left[\left(\ln \frac{b}{t}\right)^{\alpha-1}+\left(\ln \frac{t}{a}\right)^{\alpha-1}\right] \frac{g(t)}{t} d t$ for all $x \in[a, b], \alpha>0$ in Theorem 6, we obtain

$$
\begin{align*}
& \left|\left(\frac{f(a)+f(b)}{2}\right)\left[J_{a^{+}}^{\alpha} g(b)+J_{b^{-}}^{\alpha} g(a)\right]-\left[J_{a^{+}}^{\alpha}(f g)(b)+J_{b^{-}}^{\alpha}(f g)(a)\right]\right| \tag{25}\\
\leq & \frac{(\ln b-\ln a)^{\alpha+1}\|g\|_{\infty}}{2^{\alpha+1} \Gamma(\alpha+1)}\left(\frac{2^{\alpha+2}-2^{2}}{\alpha+1}\right)^{1-\frac{1}{q}} \times \\
& {\left[C_{1}(\alpha, q)\left|f^{\prime}(a)\right|^{q}+C_{2}(\alpha, q)\left|f^{\prime}(G)\right|^{q}+C_{3}(\alpha, q)\left|f^{\prime}(b)\right|^{q}\right]^{\frac{1}{q}} }
\end{align*}
$$

where for $q \geq 1, \alpha>0$,

$$
\begin{aligned}
C_{1}(\alpha, q) & =\int_{0}^{1}\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] t a^{q t} G^{q(1-t)} d t \\
C_{2}(\alpha, q) & =\int_{0}^{1}\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right](1-t)\left(a^{q t} G^{q(1-t)}+b^{q t} G^{q(1-t)}\right) d t
\end{aligned}
$$

and

$$
C_{3}(\alpha, q)=\int_{0}^{1}\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] t b^{q t} G^{q(1-t)} d t .
$$

Proof. When we use the equality (20) in (24), we obtain

$$
\begin{equation*}
\left|\left(\frac{f(a)+f(b)}{2}\right)\left[J_{a^{+}}^{\alpha} g(b)+J_{b^{-}}^{\alpha} g(a)\right]-\left[J_{a^{+}}^{\alpha}(f g)(b)+J_{b^{-}}^{\alpha}(f g)(a)\right]\right| \tag{26}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \frac{(\ln b-\ln a)^{\alpha+1}\|g\|_{\infty}}{2^{\alpha+1} \Gamma(\alpha+1)} \\
& \left\{\begin{array}{c}
\times\left(\int_{0}^{1}\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] d t\right)^{1-\frac{1}{q}} \\
{\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] \times} \\
\times\left(\int_{0}^{1}\left(t a^{q t} G^{q(1-t)}\left|f^{\prime}(a)\right|^{q}+(1-t) a^{q t} G^{q(1-t)}\left|f^{\prime}(G)\right|^{q}\right) d t\right)^{\frac{1}{q}}
\end{array}\right. \\
& \left.\left.+\begin{array}{c}
\left(\int_{0}^{1}\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] d t\right)^{1-\frac{1}{q}} \\
\times\left((1+t)^{\alpha}-(1-t)^{\alpha}\right] \times \\
\times\left(\int_{0}^{1}\left(t b^{q t} G^{q(1-t)}\left|f^{\prime}(b)\right|^{q}+(1-t) b^{q t} G^{q(1-t)}\left|f^{\prime}(G)\right|^{q}\right) d t\right.
\end{array}\right)^{\frac{1}{q}}\right\} \\
& \leq \frac{(\ln b-\ln a)^{\alpha+1}\|g\|_{\infty}}{2^{\alpha+1} \Gamma(\alpha+1)}\left(\frac{2^{\alpha+1}-2}{\alpha+1}\right)^{1-\frac{1}{q}} \\
& {\left[\begin{array}{c}
\times\left(\begin{array}{c}
\left.[(1+t))^{\alpha}-(1-t)^{\alpha}\right] \times \\
\left.\int_{0}^{1}\left[t a^{q t} G^{q(1-t)}\left|f^{\prime}(a)\right|^{q}+(1-t) a^{q t} G^{q(1-t)}\left|f^{\prime}(G)\right|^{q}\right] d t\right)^{\frac{1}{q}} \\
+\left(\int_{0}^{1}\left[t b^{q t} G^{q(1-t)}\left|f^{\prime}(b)\right|^{q}+(1-t) b^{q t} G^{q(1-t)}\left|f^{\prime}(G)\right|^{q}\right] d t\right)^{\frac{1}{q}}
\end{array}\right] . ~ . ~ . ~ . ~ . ~
\end{array}\right.}
\end{aligned}
$$

By using the inequality $a^{r}+b^{r} \leq 2^{1-r}(a+b)^{r}$ for $a, b>0, r \leq 1$, we have

$$
\begin{align*}
& \left(\frac{f(a)+f(b)}{2}\right)\left[J_{a^{+}}^{\alpha} g(b)+J_{b^{-}}^{\alpha} g(a)\right]-\left[J_{a^{+}}^{\alpha}(f g)(b)+J_{b^{-}}^{\alpha}(f g)(a)\right] \tag{27}\\
\leq & \frac{(\ln b-\ln a)^{\alpha+1}\|g\|_{\infty}}{2^{\alpha+1} \Gamma(\alpha+1)}\left(\frac{2^{\alpha+2}-2^{2}}{\alpha+1}\right)^{1-\frac{1}{q}} \\
\times & {\left[\int_{0}^{1}\left(\begin{array}{c}
{\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] t a^{q t} G^{q(1-t)}\left|f^{\prime}(a)\right|^{q}+} \\
{\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right](1-t)\binom{a^{q t} G^{q(1-t)}}{+b^{q t} G^{q(1-t)}}\left|f^{\prime}(G)\right|^{q}} \\
+\left[(1+t)^{\alpha}-(1-t)^{\alpha}\right] t b^{q t} G^{q(1-t)}\left|f^{\prime}(b)\right|^{q}
\end{array}\right) d t\right]^{\frac{1}{q}} . }
\end{align*}
$$

Corollary 2.4. When $\alpha=1$ and $g(x)=\frac{1}{\ln b-\ln a}$ are taken in Corollary 3, we obtain

$$
\begin{align*}
& \left|\left(\frac{f(a)+f(b)}{2}\right)-\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(x)}{x} d x\right| \tag{28}\\
& \leq \frac{(\ln b-\ln a)}{2^{2+\frac{1}{q}}}\left[C_{1}(1, q)\left|f^{\prime}(a)\right|^{q}+C_{2}(1, q)\left|f^{\prime}(G)\right|^{q}+C_{3}(1, q)\left|f^{\prime}(b)\right|^{q}\right]^{\frac{1}{q}} .
\end{align*}
$$

References

[1] S.S. Dragomir, Hermite-Hadamard's type inequalities for convex funtions of selfadjoint operators in Hilbert spaces, Linear Algebra Appl. 436 (2012), no. 5, 1503-1515.
[2] S.S. Dragomir and C.E.M. Pearce, Selected topics on Hermite-Hadamard type inequalities and applications, RGMIA Monographs, 2000. Available online at http://rgmia.vu.edu.au/monographs/hermite hadamard.html.
[3] J. Hua, B.-Y. Xi, and F. Qi, Hermite-Hadamard type inequalities for geometrically s-convex functions, Commun.Korean Math.Soc. 29 (2014), No.1, pp.51-63.
[4] D-Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables, Applied Mathematics and Computation, 217 (2011), 9598-9605.
[5] İ. İşcan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, International Journal of Pure and Applied Mathematics, 86, No. 4 (2013).
[6] İ. İşcan, Hermite-Hadamard type inequalities for GA-s-convex functions, Le Matematiche, LXIX (2014)-Fasc. II, pp. 129-146.
[7] A. P. Ji, T. Y. Zhang, F. Qi, Integral Inequalities of Hermite Hadamard Type (α, m)-GA convex Functions, Journal of Function Space and Applications, 2013 (2013), Article ID 823856, 8 pages.
[8] A. A. Kilbas H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations.Elsevier, Amsterdam (2006)
[9] M.A. Latif, S. S. Dragomir, E. Momoniat, Some Fejér type integral inequalities related with geometrically-arithmetically-convex functions with applications, (Submitted).
[10] M.A. Latif, New Hermite Hadamard type integral inequalities for GA-convex functions with applications. Volume 34, Issue 4 (Nov 2014).
[11] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2) (2000), 155-167. Available online at http://dx.doi.org/10.7153/mia-03-19.
[12] C. P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (4) (2003), 571-579. Available online at http://dx.doi.org/10.7153/mia-06-53.
[13] A. P. Prudnikov, Y. A. Brychkov, O. J. Marichev, Integral and series, Elementary Functions, Vol. 1,Nauka, Moscow, 1981.
[14] Y. Shuang, H.-P. Yin, and F. Qi, Hermite-Hadamard type integral inequalities for geometricarithmetically s-convex functions, Analysis (Munich) 33 (2) (2013), 197-208. Available online at http://dx.doi.org/10.1524/anly.2013.1192.
[15] T.-Y. Zhang, A.-P. Ji and F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Le Matematiche, Vol. LXVIII (2013) - Fasc. I, pp. 229-239. doi: 10.4418/2013.68.1.17
[16] X.-M. Zhang, Y.-M. Chu, and X.-H. Zhang, The Hermite-Hadamard Type Inequality of GAConvex Functions and Its Application, Journal of Inequalities and Applications, Volume 2010, Article ID 507560, 11 pages. doi:10.1155/2010/507560.

[^0]: Received February 6, 2016 - Accepted May 02, 2016.

[^1]: ${ }^{a}$ Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28100, Giresun, TURKEY.
 e-mail: imdati@yahoo.com, imdat.iscan@giresun.edu.tr
 ${ }^{b}$ Dereli Vocational High School, Giresun University, 28100, Giresun, TURKEY.
 e-mail: sercanturhan28@gmail.com, sercan.turhan@giresun.edu.tr

