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1. Introduction

The classical or the usual convexity is defined as follows:
A function f: 0 # I CR — R, is said to be convex on I if the inequality

fle+ (1 —-t)y) <tflx)+1—1)f(y)
holds for all z,y € I and t € [0, 1].
A number of papers have been written on inequalities using the classical convex-
ity and one of the most fascinating inequalities in mathematical analysis is stated as
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follows:

b
a+b 1 f(a)+ f(b)
1(%57) = 525 [ s < L9210 (1)
where f : I C R — R be a convex mapping and a,b € I with a < b . Both the
inequalities in (1) hold in reversed direction if f is concave. The inequalities stated in
(1) are known as Hermite-Hadamard inequalities.

For more results on (1) which provide new proof, significant extensions, general-
izations, refinements, counterparts, new Hermite-Hadamard-type inequalities and nu-
merous applications, we refer the interested reader to [1]-[5],[7, 11, 12, 14] and the
references therein.

The usual notion of convex functions have been generalized in diverse manners. One
of them is called GA-convex functions and is stated in the definition below.

Definition 1.1. [11, 12]A function f: I C R, = (0,00) — R is said to be GA-convex
function on I if

Fay' ™) S Af (@) + (1 =N f(y)

holds for all x,y € I and X\ € [0,1], where 2 y*=* and \f (x) + (1 = \) f (y) are
respectively the weighted geometric mean of two positive numbers x and y and the
weighted arithmetic mean of f(x) and f(y).

The definition of GA-convexity is further generalized as GA-s-convexity in the second
sense as follows.

Definition 1.2. [14] A function f: I C Ry = (0,00) — R is said to be GA-s-convex
function on I if

Fty' ™) <X f (@) + (1= X f ()
holds for all z,y € I and X € [0,1] and for some s € (0, 1].

For the properties of GA-convex functions and GA-s-convex function, we refer the
reader to [6, 9, 10, 14, 15, 16] and the references therein.

Most recently, a number of findings have been seen on Hermite-Hadamard type
integral inequalities for GA-convex and for GA-s-convex functions.

Zhang et all. in [15] established the following Hermite-Hadamard type integral in-
equalities for GA-convex function.

Theorem 1.1. [15] Let f: I C R, = (0,00)— R be differentiable on I°, and a,b € I
with a < b and f" € L{a,b]. If |f'|* is GA-convex on [a,b] for ¢ > 1, then

o 1-1/q
bIb) ~ af(a / floya| < 0210 )

x {[L(a®8%) — a®] | f'(a)|* + [0 — L(a®,0%)] |f'(B)|“} 7.
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Theorem 1.2. [15] Let f: I C R, = (0,00)— R be differentiable on I°, and a,b € 1
with a < b and f" € L{a,b]. If |f'|* is GA-convex on [a,b] for ¢ > 1, then

bf(b) —af(a /f Ydz| < (Inb—1na) (3)

% [L(a2/ @D ga/a=0y _ 20/ Y014 (a1 (b))

Theorem 1.3. [15] Let f: I C Ry = (0,00)— R be differentiable on I°, and a,b € I
with a < b and f' € L{a,b]. If | f'|* is GA-convez on [a,b] for ¢ > 1 and 2q > p > 0,

then
b

Inb—Ina)~e
X [L(a@q—p)/(q—l)’ b(2q—p)/(q—1))] 1-1/q
X{ (aP,bP) — a”] | f'(a)|" + [P — L(a”, " /b|q}1/q'

(
Theorem 1.4. [6] Suppose that f: 1 C R, = (0,00) — R is GA-s-convex function
in the second sense, where s € [0,1) and let a,b € [0,00), a < b. If f € Lla,b|, then
the following inequalities hold

flz f(a) + f(b)
95— 1 <
/ \/_ lnb—lna/ - s+1 7 (5)
the constant k = ? is the best possible in the second inequality in (1).

If fis GA-convex function in Theorem 4, then we get the following inequalities

/ (@) = lnbilna / fix)dx = M' (6)

For more results on GA-convex function and GA-s-convex function see e.g [6, 9, 14].

Definition 1.3. [9] A function f: I C Ry = (0,00) — R is said to be geometrically
symmetric with respect to Vab if the inequality

ab
g (;) =g (x)
holds for all x € [a, b].

Definition 1.4. [8] Let f € Lla,b]. The right-hand side and left-hand side Hadamard
fractional integrals J& f and J;- f of order o > 0 with b > a > 0 are defined by

xT

secf@) = g0 [ (05) H0F w0

a
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Jo f(z) = ﬁ] <ln é)a_l f(t)%, v <b

T

respectively where T'(«) is the Gamma function defined by T'(« fe‘tta Ydt and

T, f(@) = J2 f(@) = f(a).
Lemma 1.1. [13] For 0 <0 <1 and 0 < a < b we have
‘ae —be‘ < (b—a)’.

In [4], D. Y. Hwang established a new identity for convex functions. In this study,
we will prove a similar identity and will obtain Hermite-Hadamard-Fejér inequality for
GA-convex functions via fractional integrals based on this new identity.

2. Main Results

Throughout in this section, we will use the notations L () = a'G'™t, U (t) = b'G**
and G = G (a,b) = Vab .

Lemma 2.1. Let f: I CR, = (0,00) — R be a differentiable function on I°, a,b €
I° with a < b. If h: [a,b] — [0, 00) is a differentiable function and " € L ([a,b]), the
following inequality holds:

b
[h(b) — 2h(a)] @ + h(b fTb / (7)

lnb—lna

tGl t . ( )} f/ (atGl—t) atGl_tdt

O\H

s [ Rh ) - he] 5 (6T e ar

Proof. We calculate the integrals on the right side of (7), as follows

1

L= [ PR - nela (s @)

= [2n(a tGH) —hv)] f (a'G)]

~ 2 /f (' G I (a'G) a' G dt
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and
1
I = / 2 (HG) — )] d (f (HG)
0
= [2n (b'G*Y) — h(D)] f (bGP,
1
— 2In (g) /f (thlft) % (thkt) bt dt.
0
Therefore
I + I a b
) - an(e) T ) T ®)
1
lnb—lna {/f (a'GY 1) I (a'GM*) o' Mt
0
1
+ / fGT) R (VG thltdt} :
0
This completes the proof of the lemma. 0J

Theorem 2.1. Let f : I C Ry = (0,00) — R be differentiable function on I°and
a,b € I° with a < b. If h : [a,b] — [0,00) is a differentiable function and |f'| is
GA-convex on |a,bl], the following inequality holds

@) —2n@) 250w L2 - [ oo )
< BB 1 ) | £(0)] + Gl b)) + ol B) P
where
Gi(ab) = / ta'G*" |2k (a'G"") — h(b)| dt, (10)

o
_

Gah) — / (1— )a'G |20 ('G*) — h(b)| dt (11)

[e=]
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1
+ / (1= t)p'G" " |2h (b'G*") — h(b)| dt
0
1

G (a,b) = / t'G* 20 (B'G'Y) — h(b)] dt.

0
and

Proof. We get the following inequality by taking the absolute value on both sides of
the equality in (7):

@) —2n@) 25 n L - [ s (12)

1
< mbha { [ 12 (@GH) = hib)] | (G G
0

1
+ / 20 (B'G*) = h)| | £ (BG* ) th”dt}.
0

Since |f'| is GA-convex on [a,b] in (12), we have for all ¢ € [a, b] that

@) —20@) 25 n L2 - [ o (13)

< mbone { [ 120 (@610 = he)| 11 @)+ (1= )76 G

+/ |25 (B'G*) — B(B)| [t £/(B)] + (1 — 1) f’(G)]th”dt}.

This completes the proof of the theorem. O

Corollary 2.1. Suppose that g : [a,b] — [0,00) is a continuous positive mapping and
geometrically symmetric with respect to Vab (i.e. g (“;b) = g(z) holds for all x € [a,b]
with a < b). Choosing h(z) = [ [(ln lz’)a_l + (In i)a_l] @dt for all x € [a,b] and

a > 0 wn Theorem 5, we obtain

‘ (M) [T29(b) + Ji-g(@)] = [T (f9) () + T (fg) (@] (14)
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_(nb—In a)*
= 20+ (o + 1)

where

C(a) = / [(1+8)* — (1 —t)*ta'G'dt,
0

Cs (a) = / 1 —t (1 —|—t) — (1 _ t)o‘] [atGl_t I thl_t} &
0
and
/ [(141)* — (1 —)*]tb'G*"dt.
0

Specially, if we use Lemma 1 in (14), for 0 < a < 1, we have

‘(f(a);rf(b)

) % g(b) + T g(a)] — 1% (f9) () + JE- (fg) ()]

(Inb—Ina)*™

l9llc [P (@) [ (@) + D2 (@) |f(G)] + Ds (@) [£(b)]]

2I' (v + 1)
where
1
l)1 (a) — /taJrlatGlt,
0
1
Dy (a) = / (1= t"a'G"" + (1 — ) tV'G' ] dt
0
and

1
D3 (a) — /taJrlthlt.
0

Proof. 1f we take h(x)

equality (9), we have

'F o (L0210

19]loc [Cr (@) [F (@) + C2 () [f/(G)] + Cs () | F(B)]],

(15)

i [(ln %)ail + (In 2)%1} 9t for all x € [a,b] in the in-

) 2 g(b) + 2 g(a)] — T (a) [ (o) () + J& (fo) )| (16)
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(

atGl—t 1 1
2 [ () 4 ()| L
Inb—1Ina f a
S— b a—1 a—1
T L I e

\

thl—t

2 [ [+ ()| e

+f ab a—1 a—1
| )
X[+ 1 =D (@G dt

Since g(z) is geometrically symmetric with respect to x = v ab, we have

2 / [(m g) Ty (1n §>a1] @daz
_ /[(m g)a_1+ (m E)CH] @d:ﬁ

and

[57 [(m g) T (m §>a1] @d:ﬂ .

for all t € [0,1]. By using (17)-(18) in (16), we have

‘(f(a)—;f(b)

< [tIf(@)] + (1 = )| f(G) ) atGHd

)ﬂwm+ﬂmm—[ﬁuw@+ﬁumnm

41

(18)

(19)
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Inb—1Ina / bt(j}it |:(1n 9)0‘_1 + (ln E)a_l] 9 1o
S T@ / atGl—t r @ z
o x[t[f'(a)+ 1 =t)[f(G)]a"Gdt

1 btcj‘l_t |:(1n g)a_l n (ln £)04*1] de
—"_ / atGlft r a r
0 XSO+ A=) [f(G)VGdt
1 thlft

. 1n4br—(;)1a”g”w / Gf [(mg) (o) ] %dm]
o x[t|f(a)+ (1=t [f (GG dt

N /1 rj [(ln%)ml—l—(lnf)a_l] %d:z:]

o X[ELfB)+ 1= (GG dt

In the last inequality, we calculate integrals simply as follows:

thl—t b o1 . 1
/ [(ln —> + (nf) ] —dx (20)
T a T
atGlft
btglft b o1 1 thlft ) 1
= / (ln—> —dx + / <ln£) —dx
T T a T
atGlft atGlft
2.(Inb—Ina)®

= T (T+8)* = (1—1)7].

By Lemma 1, for 0 < a < 1, we have

ptGl-t b 1
a- a—1
/ [(ln—> —i—(nf) ] ldaz:
x a T
atGlft
ptgl-t b o1 1 ptGl-t ) 1
= / (ln —> —dx + / <ln f) —dx
x T a x
atGlft atGlft
< 2.(Inb—1na) "
o}
A combination of (19) and (20), we have (14) and (15). Thus the proof is completed.

O

Corollary 2.2. (1)If we take o = 1, we obtain the following Hermite-Hadamard-Fejer
type inequality for GA-convex functions related to (15):
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b b
b
“f(a) 10 o) [ )2 1)
Inb — Ina)?
< b= I D gl [D(1) IF @] + DoV £ (@) + D1} |F (8]
where for a,b > 0, we have
[ o2 da 8a — 8G
Di(1) = /t @Gt = m{‘“‘ nb—Ina (1nb—1na)2}’
0
Dy(1) = [t(1—t)a'G"tdt+ [t(1—1t)b'G 'dt
/ /
B 2 2(a+b+2G) 8(a—0b)
a lnb—lna{ Inb—Ina (1nb—1na)2}’
(o2 4 8b — 8G
Dy(1) = /t2a G'tdt = Inb—1Ina {b_ Inb—1Ina * (Inb — lna)Z} ‘
0
(2)If we take g(x) =1 in (14), we obtain the following inequality
b r 1
(HO ) - s 0+ g s ) (22)
Inb—1
< 0= [0y (@) (@) + Ca (@) (O] + Ca (@) [F B a0
(3)If we take g(x) =1 and a =1 in (15), we obtain the following inequality
b
fla) + 1) IO
( 2 )_(lnb—lna)/ r 29)
Inb—Ina
< BB 1)@+ D ()17 + Dy ()70

Theorem 2.2. Let f: 1 C Ry = (0,00) — R be a differentiable function on I°,
a,b € I° with a < b. If h : [a,b] — [0,00) is a differentiable function and |f’|? is
GA-convex on [a,b] for ¢ > 1, the following inequality holds

(24)
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Inb—1Ina (f 12h(a'G'") — h(b)] dt) '
< - 0 1
: ! 1 (12h(a'G*") — h(b)| dt) 7
- ({ (tat GIO=1 | f(a)|” + (1 — 1) Ge0=D | F/(G)|7) )

1 1-7
+ ({ |2R (B! G 1) — h(D)| dt)
" } (2R (VG — R(b)| dt) x a
[ (o0 | P + (1 - pmeati=n | ()
Proof. Continuing from (13) in proof of Theorem 5, the power mean inequality and us-
ing the fact that |f’|? is GA-convex on [a, b], we get the required result. This completes
the proof of the theorem. O
Corollary 2.3. Let g : [a,b] — [0,00) be a positive continuous mapping and geomet-
rically symmetric with respect to \/ab (i.e. g (2) = g(x) holds for all z € [a,b] with
a<b) Ifh(z)=[ [(lni—’)ail - (lné)a_l} 9t for all x € [a,b], a > 0 in Theorem

6, we obtain

Kﬁﬂgﬁgwmmm+ﬁmm—[ﬁﬁ@@+%ﬂﬁﬂw (25)

(hlb B ln a)a+1 ||g||oo (204+2 B 22)1—
- 2001 (a + 1) a+1

[C1 (@) 1f (@ + Ca (. q) (@) + Cs (e, q) |F ()]
where for q > 1, a > 0,

1

Ci(a,q) = / (14 8)* — (1 — )] ta G0V dt,

Cy (Oé, Q) = / [(1 + t)a — (1 — t)a] (1 — t) (athQ(lft) + bthq(17t)) dt

and
1

C%ﬁuw=1/K1+wa—<1—wﬂﬂwaﬂkﬂﬁ.
0
Proof. When we use the equality (20) in (24), we obtain

Kﬂ@gﬂgwﬁm@+ﬁmm—[ﬁum@+ﬁumwm (26)
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(Inb—1Ina)*" gl
- 2001 (v + 1)

X (Z (1+6)" — (1 — 1) dt)l_;

Q=

! [(14+8)*—(1—1t)] x
: <{ (ta?GI=0 | f'(@)]* + (1 = ) GI [ f(G)|) dt )

(}K1+wa—<1—wﬂd§1;

0

! [(1+8)° = (L= )7 x ‘
(g pon Lo e @ a )

+

(nb— na)™ lgll,. 21 =2,
S T ety Cazi)
1 (L+ 1) = (1= 1)7] x %
X ({ [tathq(l—t) ’f/(a)rl + (1 . t>athq(1—t) ‘f’(G)‘q} dt)
| (46 = (1= 1] x E
+ ({ [tbthq(l—t) ]f’(b)|q + (1 . t)bthq(l—t) |f’(G)]q] dt)
By using the inequality a” + 0" < 21" (a + b)" for a,b > 0,7 < 1, we have
(L) o) + @) = e G0 0+ 5 () @] (o)

(Inb—Ina)*™ g], 207> - 2%,

[

- 2001 (a + 1) ( a+1 )
1 (1) = (1= )G | o)+ %
qtyq(1—t
[ o -a-nra-0( G )irer |a
: L+ 0% = (1= 2] G0 | P By
O
Corollary 2.4. When a =1 and g(x) = m are taken in Corollary 3, we obtain
b
fa) + f(b) 1 f(x)
|< 2 )_lnb—lna/ x da (28)
(Inb—Ina) g i NN
< —— [ (LY (@) +Co(1,9) [ () + C3(1,9) | ' (D)I] 7.

= 1
2%
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