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Property (gab) through localized SVEP

Pietro Aienaa and Salvatore Trioloa

Abstract. In this article we study the property (gab) for a bounded linear operator T ∈ L(X)
on a Banach space X which is a stronger variant of Browder’s theorem. We shall give several
characterizations of property (gab). These characterizations are obtained by using typical tools
from local spectral theory. We also show that property (gab) holds for large classes of operators
and prove the stability of property (gab) under some commuting perturbations.
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1. Introduction

Property (gab), for bounded linear operators T ∈ L(X) defined on a Banach spaces
X, has been introduced by Berkani and Zariouh in [24]. Other variants of Browder’s
theorem are property (b), property (ab), and property (gb), that have been introduced
in [22] and [24]. All these properties may be thought as stronger versions than the
classical Browder’s theorem or of a-Browder’s theorem. The properties (b), (ab) and
(gb), and Browder type theorems have been also studied, by using methods of local
spectral theory in [9], [10], [7], [5], [8], and [11]. In this paper we continue, in the same
vein, the study of property (gab) by means of methods of local spectral theory, and,
in particular, we show that T ∈ L(X) satisfies property (gab) precisely when the dual
T ∗ has the SVEP at the points of a certain subset Σg

a(T ) of the spectrum σ(T ), or
equivalently Σg

a(T ) consists of isolated points of σ(T ). The relationships between the
various versions of Browder’s type theorem are then obtained by using easy inclusions
of suitable subsets of the spectrum.

Further, property (gab) for T may be characterized by means of some properties
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of the analytic core K(λI − T ), or of the hyper-range (λI − T )∞(X), as λ ranges in
Σg
a(T ). It is also shown that the property (gab) for T ∗ holds if and only if the quasi-

nilpotent part H0(λI − T ) is finite-dimensional as λ ranges in Σg
a(T

∗). In the last part
we consider the permanence of property (gab) under some commuting perturbations
and the characterization of this property assuming some polaroid assumptions for T .

2. Definitions and preliminary results

Let T ∈ L(X) be a bounded linear operator defined on an infinite-dimensional
complex Banach space X, and denote by α(T ) and β(T ), the dimension of the kernel
ker T and the codimension of the range R(T ) := T (X), respectively. Let

Φ+(X) := {T ∈ L(X) : α(T ) <∞ and T (X) is closed}

denote the class of all upper semi-Fredholm operators, and let

Φ−(X) := {T ∈ L(X) : β(T ) <∞}

denote the class of all lower semi-Fredholm operators. If T ∈ Φ±(X) := Φ+(X) ∪
Φ−(X), the index of T is defined by ind (T ) := α(T )−β(T ). If Φ(X) := Φ+(X)∩Φ−(X)
denotes the set of all Fredholm operators, the set of Weyl operators is defined by

W (X) := {T ∈ Φ(X) : indT = 0},

the class of upper semi-Weyl operators is defined by

W+(X) := {T ∈ Φ+(X) : indT ≤ 0},

and class of lower semi-Weyl operators is defined by

W−(X) := {T ∈ Φ−(X) : indT ≥ 0}.

Clearly, W (X) = W+(X) ∩W−(X). The classes of operators above defined generate
the following spectra: the Weyl spectrum, defined by

σw(T ) := {λ ∈ C : λI − T /∈ W (X)};

and the upper semi-Weyl spectrum, defined by

σuw(T ) := {λ ∈ C : λI − T /∈ W+(X)}.
Let p(T ) := p be the ascent of an operator T ; i.e. the smallest non-negative integer
p such that ker T p = ker T p+1. If such integer does not exist we put p(T ) = ∞.
Analogously, let q(T ) := q be the descent of T ; i.e the smallest non-negative integer q
such that T q(X) = T q+1(X), and if such integer does not exist we put q(T ) = ∞. It
is well known that if p(T ) and q(T ) are both finite then p(T ) = q(T ), see [1, Theorem
3.3]. Moreover, if 0 < p(λI − T ) = q(λI − T ) < ∞ then λ is a pole of the resolvent,
see [28, Proposition 50.2], and in particular an isolated point of σ(T ).

The class of all Browder operators is defined

B(X) := {T ∈ Φ(X) : p(T ), q(T ) <∞};
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while the class of all upper semi-Browder operators is defined

B+(X) := {T ∈ Φ+(X) : p(T ) <∞}.
The Browder spectrum is denoted by σb(T ), while the upper semi- Browder spectrum is
denoted by σub(T ). Obviously, B(X) ⊆ W (X) and B+(X) ⊆ W+(X), see [1, Theorem
3.4], so σw(T ) ⊆ σb(T ) and σuw(T ) ⊆ σub(T ) .

In the sequel we denote by σa(T ) the approximate point spectrum, defined by

σa(T ) := {λ ∈ C : λI − T is not bounded below},
where an operator is said to be bounded below if it is injective and has closed range.
The classical surjective spectrum of T is denoted by σs(T ).

An operator T ∈ L(X) is said to satisfy Browder’s theorem if σw(T ) = σb(T ), or
equivalently ∆(T ) = p00(T ), where

∆(T ) := σ(T ) \ σw(T ) and p00(T ) = σ(T ) \ σb(T ).

The operator T ∈ L(X) is said to satisfy a- Brower’s theorem if σuw(T ) = σub(T ), or
equivalently ∆a(T ) = pa00(T ), where

∆a(T ) := σa(T ) \ σuw(T ) and pa00(T ) := σa(T ) \ σub(T ).

It is known that a-Browder’s theorem entails Browder’s theorem.

Semi-Fredholm operators have been generalized by Berkani ([17], [20] and [19]) in
the following way: for every T ∈ L(X) and a nonnegative integer n let us denote by
T[n] the restriction of T to T n(X), viewed as a map from the space T n(X) into itself
(we set T[0] = T ). T ∈ L(X) is said to be semi B-Fredholm, (resp. B-Fredholm, upper
semi B-Fredholm, lower semi B-Fredholm,) if for some integer n ≥ 0 the range T n(X)
is closed and T[n] is a semi-Fredholm operator (resp. Fredholm, upper semi-Fredholm,
lower semi-Fredholm). In this case T[m] is a semi-Fredholm operator for all m ≥ n ([20])
with the same index of T[n]. This enables one to define the index of a semi B-Fredholm
as ind T = ind T[n].

A bounded operator T ∈ L(X) is said to be B-Weyl (respectively, upper semi B-
Weyl, lower semi B-Weyl) if for some integer n ≥ 0 the range T n(X) is closed and
T[n] is Weyl (respectively, upper semi-Weyl. lower semi-Weyl). The B-Weyl spectrum
is defined by

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl},
and the upper semi B-Weyl spectrum of T is defined by

σubw(T ) := {λ ∈ C : λI − T is not upper semi B-Weyl}.
Analogously, the lower semi B-Weyl spectrum of T is defined by

σlbw(T ) := {λ ∈ C : λI − T is not lower semi B-Weyl}.
The concept of Drazin invertibility has been introduced in a more abstract setting

than operator theory. In the case of the Banach algebra L(X), T ∈ L(X) is said to be
Drazin invertible (with a finite index) if p(T ) = q(T ) < ∞, and this is equivalent to
saying that T = T0⊕T1, where T0 is invertible and T1 is nilpotent, see [29, Corollary 2.2]
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and [32, Prop. A]. Every B-Fredholm operator T admits the representation T = T0⊕T1,
where T0 is Fredholm and T1 is nilpotent [19], so every Drazin invertible operator is B-
Fredholm. Drazin invertibility for bounded operators suggests the following definition:

The concept of pole of the resolvent suggests the following definition:

Definition 2.1. An operator T ∈ L(X), is said to be left Drazin invertible if p :=
p(T ) < ∞ and T p+1(X) is closed. T ∈ L(X), is said to be right Drazin invertible if
q := q(T ) <∞ and T q(X) is closed. If λI − T is left Drazin invertible and λ ∈ σa(T )
then λ is said to be a left pole. A left pole λ is said to have finite rank if α(λI−T ) <∞.
If λI − T is right Drazin invertible and λ ∈ σs(T ) then λ is said to be a right pole. A
right pole λ is said to have finite rank if β(λI − T ) <∞.

The Drazin spectrum is then defined as

σd(T ) := {λ ∈ C : λI − T is not Drazin invertible},
the left Drazin spectrum is defined as

σld(T ) := {λ ∈ C : λI − T is not left Drazin invertible},
while the right Drazin spectrum is defined as

σrd(T ) := {λ ∈ C : λI − T is not right Drazin invertible},
It should be noted that the concepts of Drazin invertibility may be expressed in terms
of B-Fredholm theory. Indeed, T ∈ L(X) is Drazin invertible (respectively, left Drazin
invertible, right Drazin invertible) if and only if T is B-Browder (respectively, upper
semi B-Browder, lower semi B-Browder), see [18] or [6].

In the following we need the following elementary lemma:

Lemma 2.2. Let T ∈ L(X).

(i) If T is upper semi B-Fredholm and α(T ) <∞ then T is upper semi-Fredholm.

(ii) If T is injective and upper semi B-Fredholm then T is bounded below.

Proof. (i) If T is upper semi B-Fredholm then there exists n ∈ N such that T n(X)
is closed. By assumption α(T ) < ∞, and this implies that α(T n) < ∞, so T n is
upper semi-Fredholm and by the classical Fredholm theory we deduce that T is upper
semi-Fredholm.

(ii) Being α(T ) = 0 and T upper semi-Fredholm from part (i), then T (X) is closed,
so T is bounded below.

Define

Γ(T ) := {n ∈ N : m ≥ n,m ∈ N⇒ T n(X) ∩ ker T ⊆ Tm(X) ∩ ker T}.
The degree of stable iteration is defined as dis(T ) := inf Γ(T ) if Γ(T ) 6= ∅, while
dis(T ) =∞ if Γ(T ) = ∅.

Definition 2.3. T ∈ L(X) is said to be quasi-Fredholm of degree d, in symbol T ∈
QF (d), if there exists d ∈ N such that:

(a) dis(T ) = d,
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(b) T n(X) is a closed subspace of X for each n ≥ d,
(c) T (X) + ker T d is a closed subspace of X.

It is known that T ∈ QF (d) if and only if T ∗ ∈ QF (d), see [34]. It is also known that
every semi B-Fredholm operator, and in particular every left or right Drazin invertible
operator, is quasi-Fredholm [20].

An operator T ∈ L(X) is said to have the single valued extension property at λ0 ∈ C
(abbreviated SVEP at λ0), if for every open disc U of λ0, the only analytic function
f : U → X which satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ U is the function
f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T has SVEP at every point
λ ∈ C. Evidently, an operator T ∈ L(X) has SVEP at every point of the resolvent
ρ(T ) := C\σ(T ), and both T and T ∗ have SVEP at the isolated points of the spectrum.
From definition of SVEP we easily obtain:

σa(T ) does not cluster at λ⇒ T has SVEP at λ,

and, by duality,

σs(T ) does not cluster at λ⇒ T ∗ has SVEP at λ.

In the sequel we shall freely use the following characterizations of SVEP for quasi-
Fredholm operators, in particular semi B-Fredholm operators . These characterizations
have been proved in [2].

Theorem 2.4. Let T ∈ L(X) and suppose that λ0I − T is quasi-Fredholm. Then the
following statements are equivalent:

(i) T has SVEP at λ0;

(ii) p(λ0I − T ) <∞;

(iii) σa(T ) does not cluster at λ0;

(iv) H0(λ0I − T ) is closed;

(v) there exists ν ∈ N such that H0(λ0I − T ) = ker(λ0I − T )ν.

Dually, the following statements are equivalent:

(v) T ∗ has SVEP at λ0;

(vii) q(λ0I − T ) <∞;

(viii) σs(T ) does not cluster at λ0;

(ix) there exists ν ∈ N such that K(λ0I − T ) = (λ0I − T )ν(X).

In the sequel we shall need the following result:

Theorem 2.5. For an operator T ∈ L(X) the following statements hold:

(i) If λI − T is upper semi B-Weyl and T ∗ has SVEP at λ then, λI − T is Drazin
invertible.

(ii) If λI − T is lower semi B-Weyl and T has SVEP at λ, then λI − T is Drazin
invertible.

(iii) If λI−T is B-Weyl and T and T ∗ has either SVEP at λ, then λI−T is Drazin
invertible.
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Proof. (i) There is no harm to suppose that λ = 0. Suppose that T is upper semi
B-Weyl and T ∗ has SVEP at 0. Then, by Theorem 2.4, q := q(T ) < ∞. Then there
exists n ∈ N such that T n(X) is closed and T[n] is upper semi-Weyl, i.e. T[n] is upper
semi-Fredholm with indT[n] ≤ 0. Moreover, T[m] is upper semi-Weyl for all m ≥ n.
Consider the operator T[m] : Tm(X)→ Tm(X). It is evident that

R(T[m]) = Tm+1(X) = Tm(X), for all m ≥ q,

thus T[m] is onto, i.e q(T[m]) = 0. Now, choose m ≥ max{n, q} then T[m] is both onto
and upper semi- Weyl. Then indT[m] = α(T[m]) ≥ 0, from which we obtain indT[m] = 0
and hence α(T[m]) = β(T[m]) = 0, i.e., T[m] is invertible. Consequently, T k[m] is invertible

for all k ∈ N. Therefore, kerT k ∩ Tm(X) = kerT k[m] = {0} for all k ∈ N. This implies,

by [1, Lemma 3.2, part (i)], that p(T ) <∞. Therefore, T is Drazin invertible.

(ii) Also here we can assume that λ = 0. Assume that T is lower semi B-Weyl
and T has SVEP at 0. Then, by Theorem 2.4, p = p(T ) < ∞. Then there exists
n ∈ N such that T n(X) is closed and T[n] is lower semi-Fredholm and indT[n] ≥ 0.
Moreover, T[m] is lower semi-Weyl for all m ≥ n. By [1, Lemma 3.2, part (i)] the
condition p := p(T ) < ∞ entails that ker T[m] = ker T ∩ Tm(X) = {0} for all natural
m ≥ p. Choosing m ≥ max{n, p} then T[m] is both injective and lower semi-Weyl,
hence indT[m] = −β(T[m]) ≤ 0, so indT[m] = 0, and hence T[m] is invertible, since
α(T[m]) = β(T[m]) = 0. Consequently,

Tm+1(X) = R(T[m]) = Tm(X),

and hence q(T ) <∞. Hence T is Drazin invertible.

(iii) It is evident from part (i) and (ii), since λI − T is both upper and lower semi
B-Weyl.

Theorem 2.6. Let T ∈ L(X). The following statements hold:

(i) If T ∗ has SVEP then

σd(T ) = σubw(T ) = σbw(T ). (1)

(ii) If T has SVEP then

σd(T ) = σlbw(T ) = σbw(T ). (2)

Proof. (i) Suppose that T ∗ has SVEP. Then, by [16, Corollary 2.4], σd(T ) = σbw(T ).
Obviously, σubw(T ) ⊆ σbw(T ) for every T ∈ L(X). Suppose that λ /∈ σubw(T ). Then
λI − T is upper semi B-Weyl and the SVEP for T ∗ implies, by part (i) of Theorem
2.5, that λ /∈ σd(T ). Therefore, σubw(T ) = σd(T ).

(ii) Assume that T has SVEP. Again by [16, Corollary 2.4], σd(T ) = σbw(T ). Obvi-
ously, σlbw(T ) ⊆ σbw(T ) for every T ∈ L(X). Suppose that λ /∈ σlbw(T ). Then λI − T
is lower semi B-Weyl and the SVEP for T implies, by part (ii) of Theorem 2.5, that
λ /∈ σd(T ). Therefore, σlbw(T ) = σd(T ).
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3. property (gab)

Denote by Π(T ) and Πa(T ) the set of all poles and the set of left poles of T , respec-
tively. Clearly, Πa(T ) = σa(T ) \ σld(T ). Obviously, Π(T ) ⊆ isoσ(T ), and analogously
we have

Πa(T ) ⊆ isoσa(T ) for all T ∈ L(X). (3)

In fact, if λ0 ∈ Πa(T ) then λI − T is left Drazin invertible and hence p(λ0I − T ) <∞.
Since λI − T has topological uniform descent (see [27], for definition and details), it
then follows, from [27, Corollary 4.8], that λI − T is bounded below in a punctured
disc centered at λ0. Obviously,

pa00(T ) ⊆ Πa(T ) and p00(T ) ⊆ Π(T )

for every T ∈ L(X).
Define

∆g(T ) := σ(T ) \ σbw(T ).

and
∆g
a(T ) := σa(T ) \ σubw(T ).

It should be noted that the set ∆g
a(T ) may be empty. This is, for instance, the case

of a unilateral shift right R on `2(N). Since, R has SVEP then, by [11, Corolary 2.12],
σa(R) = σubw(R), so ∆g

a(T ) = ∅.
An operator T ∈ L(X) is said to verify generalized Browder’s theorem if σbw(T ) =

σd(T ), or equivalently ∆g(T ) = Π(T ). Generalized Browder’s theorem and Browder’s
theorem are equivalent, see [15] or Theorem 3.2 of [6].

Lemma 3.1. If T ∈ L(X) then

∆g
a(T ) = {λ ∈ C : λI − T is upper semi B-Weyl and 0 < α(λI − T )}. (4)

Furthermore,
∆(T ) ⊆ ∆g

a(T ), ∆(T ) ⊆ ∆g(T ) ⊆ σa(T ),

and Πa(T ) ⊆ ∆g
a(T ).

Proof. The inclusion ⊇ in (4) is obvious. To show the opposite inclusion, suppose that
λ ∈ ∆g

a(T ). There is no harm if we assume λ = 0. Then T is upper semi B-Weyl and
0 ∈ σa(T ). Both conditions entail that α(T ) > 0, otherwise if α(T ) = 0, by Lemma
2.2, we would have 0 /∈ σa(T ), a contradiction. Therefore the equality (4) holds.

The inclusion ∆(T ) ⊆ ∆g
a(T ) is evident: if λ ∈ σ(T ) \ σw(T ) then λI − T is Weyl

and hence upper semi B-Weyl. Moreover, α(λI − T ) > 0, otherwise α(λI − T ) =
β(λI − T ) = 0, in contradiction with the assumption λ ∈ σ(T ).

The inclusion ∆(T ) ⊆ ∆g(T ) is clear, since σbw(T ) ⊆ σw(T ). To show the inclusion
∆g(T ) ⊆ σa(T ), observe that if λ ∈ ∆g(T ) then λI − T is B-Weyl. This implies that
α(λI − T ) > 0. Indeed, if were α(λI − T ) = 0, then p(λI − T ) = 0 and by part (iii) of
Theorem 2.5, λI−T would be Drazin invertible. Therefore, p(λI−T ) = q(λI−T ) = 0,
so λ /∈ σ(T ), which is impossible.

To show the inclusion Πa(T ) ⊆ ∆g
a(T ), let assume that λ ∈ Πa(T ) = σa(T ) \ σld(T ).
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Then λ ∈ σa(T ), and λI−T is left Drazin invertible, in particular, upper semi B-Weyl.
Therefore Πa(T ) ⊆ ∆g

a(T ).

The following properties, introduced in [22] and [24], may be though as stronger
variants than Browder type theorems.

Definition 3.2. Let T ∈ L(X).

(i) T is said to satisfy property (b) if ∆a(T ) = p00(T ).

(ii) T is said to satisfy property (gb) if ∆g
a(T ) = Π(T ).

(iii) T is said to satisfy property (ab) if ∆(T ) = pa00(T ).

(iv) T is said to satisfy property (gab) if ∆g(T ) = Πa(T ).

Define
Σa(T ) := ∆(T ) ∪ pa00(T ).

Property (ab) may be characterized by the SVEP at the points of Σa(T ).

Theorem 3.3. If T ∈ L(X) then the following statements are equivalent:

(i) T satisfies property (ab);

(ii) Σa(T ) ⊆ isoσ(T ),

(iii) T ∗ has SVEP at every point λ ∈ Σa(T )

Proof. The equivalence (i) ⇔ (ii) has been proved in [9, Theorem 3.2]
(ii) ⇔ (iii) T ∗ has SVEP at every point λ ∈ Σa(T ) since λ ∈ isoσ(T ) = iso σ(T ∗).

Conversely, suppose that T ∗ has SVEP at every point λ ∈ Σa(T ). Then T ∗ has SVEP
at the points of ∆(T ), as well as at the points of pa00(T ). It is easily seen that that
∆(T ) ⊆ pa00(T ). Indeed, if λ ∈ ∆(T ) then λI − T is Weyl, and the SVEP for T ∗ at
λ entails by Theorem 2.4 that q(λI − T ) < ∞. By [1, Theorem 3.4], then λI − T is
Browder, in particular upper semi-Browder, so λ ∈ pa00(T ). The SVEP for T ∗ at every
λ ∈ pa00(T ) then entails, by [9, Theorem 3.2], that T satisfies property (ab).

Set
Σg
a(T ) := ∆g(T ) ∪ Πa(T ).

Lemma 3.4. If T ∈ L(X) then Σg
a(T ) ⊆ ∆g

a(T ).

Proof. By Lemma 3.1 we have Πa(T ) ⊆ ∆g
a(T ). It remains only to prove that

∆g(T ) ⊆ ∆g
a(T ). If λ ∈ ∆g(T ) then λ ∈ σa(T ), always by Lemma 3.1. On the other

hand, we have λ /∈ σbw(T ) and hence λ /∈ σubw(T ), since σubw(T ) ⊆ σbw(T ).

Also the set Σg
a(T ) may be empty. Indeed, In the case of the unilateral right shift

R ∈ L(`2(N)) it has been observed that ∆g
a(R) = ∅, so by Lemma 3.4 Σg

a(T ) = ∅
Property (gab) may be characterized by means of localized SVEP as follows.

Theorem 3.5. For a bounded operator T ∈ L(X) the following statements are equiv-
alent:

(i) T satisfies property (gab);

(ii) T ∗ has SVEP at every λ ∈ Πa(T ) and ∆g(T ) ⊆ Πa(T );
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(iii) T ∗ has SVEP at every λ ∈ Σg
a(T );

(iv) Browder’s theorem holds for T and Π(T ) = Πa(T );

(v) Browder’s theorem holds for T and Πa(T ) ⊆ isoσ(T );

(vi) Browder’s theorem holds for T and Πa(T ) ⊆ ∂σ(T ), ∂σ(T ) the boundary of
σ(T );

(vii) Σg
a(T ) ⊆ isoσ(T );

(viii) Σg
a(T ) ⊆ isoσs(T );

(ix) Σg
a(T ) ⊆ Π(T ).

Proof. To show the equivalence (i)⇔ (ii), suppose first that T has property (gab), i.e.
∆g(T ) = Πa(T ). If λ ∈ Πa(T ) then λI−T is B-Weyl, in particular lower semi B-Weyl.
Since p(λI − T ) < ∞ then T has SVEP at λ, so, by Theorem 2.5, λI − T is Drazin
invertible, in particular q(λI − T ) < ∞ and hence T ∗ has SVEP at λ. Obviously,
∆g(T ) ⊆ Πa(T ), by assumption.

Conversely, suppose that T ∗ has SVEP at every λ ∈ Πa(T ) and ∆g(T ) ⊆ Πa(T ). If
λ ∈ Πa(T ) then λ is a left pole, so p(λI−T ) <∞, and λI−T is left Drazin invertible,
or equivalently, upper semi B-Browder. Since T ∗ has SVEP at λ then q(λI − T ) <∞,
by Theorem 2.4. Therefore, λI − T is Drazin invertible and hence Πa(T ) ⊆ Π(T ).
The opposite inclusion holds for every operator, so Πa(T ) = Π(T ). If λ ∈ Πa(T ) then
λI − T is Drazin invertible operator, and hence B-Weyl. Now, λ ∈ σ(T ) so we have
λ ∈ σ(T ) \ σbw(T ) = ∆g(T ). Thus, Πa(T ) ⊆ ∆g(T ), and since the opposite inclusion
holds by assumption we then conclude that Πa(T ) = ∆g(T ).

(ii) ⇒ (iii) Since ∆g(T ) ⊆ Πa(T ) then Σg
a(T ) = ∆g(T ) ∪ Πa(T ) = Πa(T ), hence T ∗

has SVEP at every λ ∈ Σg
a(T ).

(iii) ⇒ (iv) Suppose that T ∗ has SVEP at every λ ∈ Σg
a(T ). Let λ ∈ Πa(T ). Then

λ is a left pole and hence λI − T is left Drazin invertible, so p(λI − T ) < ∞. Since
Πa(T ) ⊆ Σg

a(T ) the SVEP of T ∗ at λ implies q(λI − T ) < ∞, by Theorem 2.4, thus
λ ∈ Π(T ) and consequently Πa(T ) ⊆ Π(T ). The opposite inclusion holds for every
T ∈ L(X), hence Π(T ) = Πa(T ). It remains to prove Browder’s theorem for T .
Let λ /∈ σw(T ). Clearly, we can suppose that λ ∈ σ(T ). Then λ /∈ σbw(T ), since
σbw(T ) ⊆ σw(T ), hence λ ∈ ∆g(T ). Since λI − T is B-Weyl, the SVEP of T ∗ at λ,
always by Theorem 2.4, implies that λI − T is Drazin invertible. But α(λI − T ) <∞,
so by [1, Theorem 3.4] λI − T is Browder, i.e λ /∈ σb(T ), from which we conclude that
σw(T ) = σb(T ), i. e., the operator T satisfies Browder’s theorem.

(iv) ⇒ (v). If λ ∈ Πa(T ) then λI − T is left Drazin invertible, hence upper semi
B-Weyl. Since T ∗ has SVEP at λ then λI −T is Drazin invertible, by Theorem 2.5, so
λ ∈ Π(T ). Therefore, Πa(T ) ⊆ Π(T ) ⊆ isoσ(T ).

(v) ⇒ (vi) Obvious, since isoσ(T ) ⊆ ∂σ(T ).

(vi)⇒ (ii) T ∗ has SVEP at every λ ∈ ∂σ(T ) = ∂σ(T ∗), in particular T ∗ has SVEP at
every point λ ∈ Πa(T ). Browder’s theorem for T is equivalent to generalized Browder’s
theorem, so ∆g(T ) = Π(T ) ⊆ Πa(T ).

Therefore, all the statements (i)-(vi) are equivalent.
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(v) ⇒ (vii) Assume that T satisfies Browder’s theorem, or equivalently, generalized
Browder’s theorem and Πa(T ) ⊆ isoσ(T ). Then, see [8, Theorem 3.5], ∆g(T ) ⊆
isoσ(T ), and consequently, Σg

a(T ) ⊆ isoσ(T ).

(vii) ⇒ (viii) It is well known that every isolated point of the spectrum belongs to
the surjectivity spectrum.

(viii) ⇒ (ix) If Σg
a(T ) ⊆ isoσs(T ) then T ∗ has SVEP at every λ ∈ Σg

a(T ). Since
λI−T is either B-Weyl or left Drazin invertible then, by Theorem 2.5, λI−T is Drazin
invertible. Hence Σg

a(T ) ⊆ Π(T ).

(ix) ⇒ (iii) T ∗ has SVEP at every λ ∈ Σg
a(T ), since q(λI − T ) <∞.

The following implications was shown in [22] and [24]. We prove of all these impli-
cations simply by observing some inclusion of subsets of the spectrum.

Corollary 3.6. Property (gb)⇒ (gab)⇒ (ab)⇒ Browder’s theorem for T .

Proof. The condition ∆g
a(T ) ⊆ isoσ(T ) characterizes property (gb), by [10, Theorem

3.4]. Hence, by Lemma 3.4 and Theorem 3.5, property (gb) entails property (gab).
Property (ab) is equivalent to the inclusion Σa(T ) ⊆ isoσ(T ), by Theorem 3.3, and
obviously, by Lemma 3.1 Σa(T ) = ∆(T ) ∪ pa00(T ) ⊆ ∆g(T ) ∪ Πa(T ) = Σg

a(T ). Hence,
by Theorem 3.5 property (gab) entails property (ab). The last implication follows once
noted that ∆(T ) ⊆ Σa(T ) and hence property (ab) entails ∆(T ) ⊆ isoσ(T ), and this
inclusion is equivalent to Browder’s theorem for T , see [5, Theorem 2.9].

An operator T ∈ L(X) is said to be a Riesz operator if λI − T ∈ Φ(X) for every
λ ∈ C \ {0}. Examples of Riesz operators are compact and quasi-nilpotent operators

Corollary 3.7. Suppose that T,K ∈ L(X) commutes and K is a Riesz operator. If
T ∗ has SVEP then T +K satisfies property (gab).

Proof. The dual of a Riesz operator is also a Riesz operator, see [1, Corollary 3.114].
The SVEP for T ∗ is transferred to T ∗+K∗ = (T +K)∗, see [12]. By Theorem 3.5 then
T +K has property (gab).

Every operator T ∈ L(X) has the SVEP at the isolated points of the spectrum,
and, by Theorem 3.5, property (gab) is equivalent to the inclusion Σg

a(T ) ⊆ isoσ(T ).
Therefore, if T has (gab) then T has SVEP at every point of Σg

a(T ). The converse is
false. In the next we give an example of an operator which has SVEP but the property
(gab) fails for T .

Example 3.8. Let R ∈ L(`2(N)) denote the unilateral right shift. It is known that
σ(R) = D(0, 1), where D(0, 1) denotes the closed unit disc of C, while σa(R) = Γ,
where Γ denotes the unit circle. Define T := 0 ⊕ R. Clearly, T has SVEP, since T
is the direct sum of operators having SVEP, and σ(T ) = D(0, 1). Let λ /∈ σbw(T ),
and suppose that λ ∈ σ(T ). Then, by Theorem 2.5, λI − T is Drazin invertible, and
hence λ is pole of the resolvent of T , in particular an isolated point of σ(T ), which is
impossible. Therefore σbw(T ) = σ(T ) = D(0, 1). On the other hand

σa(T ) = σa(R) ∪ {0} = Γ ∪ {0}.
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We show that Πa(T ) = {0}, i.e. 0 is a left pole. Evidently, p := p(T ) = p(R)+p(0) = 1.
We have T (X) = {0}⊕R(X), so T (X) = T 2(X) is closed, since R(X) is closed. Hence
0 is a left pole, and

Πa(T ) = {0} 6= ∆g(T ) = σ(T ) \ σbw(T ) = ∅

Consequently, T does not satisfy property (gab).

Theorem 3.9. If T ∈ L(X) the following statements are equivalent:

(i) T has property (gb);

(ii) T has property (gab) and σbw(T ) ∩∆g
a(T ) = ∅;

(iii) T satisfies a-Browder’s theorem and σbw(T ) ∩∆g
a(T ) = ∅;

(iv) T satisfies Browder’s theorem and σbw(T ) ∩∆g
a(T ) = ∅.

Proof. The equivalence (i) ⇔ (ii) has been proved in [24, Theorem 2.11]. The impli-
cations (i) ⇒ (iii) ⇒ (iv) are clear, since property (gb) implies a-Browder’s theorem,
see [24, Theorem 2.4]. To show the implication (iv) ⇒ (i), suppose that λ ∈ ∆g

a(T ).
Then λ /∈ σbw(T ) by assumption, and since Browder’s theorem is equivalent to gener-
alized Browder’s theorem then λ /∈ σd(T ), so λI − T is Drazin invertible, and hence
λ ∈ isoσ(T ). The inclusion ∆g

a(T ) ⊆ isoσ(T ) is equivalent, by [10, Theorem 3.4], to
the property (gb).

The quasi-nilpotent part of T , is defined as follows:

H0(T ) := {x ∈ X : lim
n→∞

‖T nx‖
1
n = 0}.

It is easily seen that ker T n ⊆ H0(T ) for every n ∈ N, so N∞(T ) ⊆ H0(T ), where
N∞(T ) :=

⋃∞
n=1 ker T

n denotes the hyper-kernel of T .
An other important subspace in local spectral theory is given by the analytic core

K(T ). To define this subspace, recall that the local resolvent set of T at the point
x ∈ X, is the set ρT (x) defined as the union of all open subsets U of C for which there
exists an analytic function f : U → X with the property that (λI − T )f(λ) = x for all
λ ∈ U . The local spectrum σT (x) of T at x is the set defined by σT (x) := C\ρT (x). For
every subset F of C, then the analytic spectral subspace of T associated with F is defined
as the set XT (F ) := {x ∈ X : σT (x) ⊆ F}. The analytic core K(T ) of T ∈ L(X) is
defined as K(T ) := XT (C \ {0}). Note that K(T ) ⊆ T∞(X) ⊆ T n(X) for all n ∈ N,
where T∞(X) :=

⋂∞
n=0 T

n(X) denotes the hyper-range of T , and T (K(T )) = K(T ),
see [1, Theorem 1.21].

The two subspaces H0(T ) and K(T ) are, in general, not closed, and, by [1, Theorem
2.31]

H0(λI − T ) closed⇒ T has SVEP at λ. (5)

Furthermore, if λ ∈ isoσ(T ) then X = H0(λI−T )⊕K(λI−T ), see [1, Theorem 3.74].
Consequently, if T has property (gab), by Theorem 3.5 we have Σg

a(T ) ⊆ isoσ(T ), and
hence

X = H0(λI − T )⊕K(λI − T ) for all λ ∈ Σg
a(T ). (6)
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The following results show that property (gab) may be characterized by some con-
ditions that are formally weaker than the one expressed by the decomposition (6).

Theorem 3.10. For an operators T ∈ L(X) the following statements are equivalent:

(i) T satisfies property (gab);

(ii) X = H0(λI − T ) +K(λI − T ) for all λ ∈ Σg
a(T );

(iii) there exists a natural ν := ν(λ) such that K(λI − T ) = (λI − T )ν(X) for all
λ ∈ Σg

a(T )(T );

(iv) X = N∞(λI − T ) + (λI − T )∞(X) for all λ ∈ Σg
a(T );

(v) there exists a natural ν := ν(λ) such that (λI − T )∞(X) = (λI − T )ν(X) for all
λ ∈ Σg

a(T ).

Proof. (i) ⇒ (ii) Clear, as observed in (6).

(ii) ⇒ (i) By [26, Theorem 5], the condition X = H0(λI − T ) + K(λI − T ) is
equivalent to the inclusion λ ∈ isoσs(T ). Hence Σg

a(T ) ⊆ isoσs(T ) and from Theorem
3.5 it immediately follows that T satisfies property (gab).

(i)⇔ (iii) If T satisfies property (gab) then, by Theorem 3.5, T ∗ has SVEP at every
λ ∈ Σg

a(T ). Since for every λ ∈ Σg
a(T ), λI − T is quasi-Fredholm then, by Theorem

2.4, q := q(λI − T ) < ∞ for all λ ∈ Σg
a(T ), so (λI − T )∞(X) = (λI − T )q(X).

Since for every λ ∈ Σg
a(T ) the operator λI − T is upper semi B-Fredholm, then there

exists ν ∈ N such that (λI − T )n(X) is closed for all n ≥ ν, hence (λI − T )∞(X) is
closed. As observed above, for every λ ∈ Σg

a(T ), λI−T is quasi-Fredholm and hence has
topological uniform descent, see [18]. Furthermore, by [27, Theorem 3.4], the restriction
(λI − T )|(λI − T )∞(X) is onto, so (λI − T )((λI − T )∞(X)) = (λI − T )∞(X). By [1,
Theorem 1.22] it then follows that (λI − T )∞(X) ⊆ K(λI − T ), and, since the reverse
inclusion holds for every operator, we then conclude that

(λI − T )∞(X) = K(λI − T ) = (λI − T )q(X),

for all λ ∈ Σg
a(T ).

Conversely, let λ ∈ Σg
a(T ) be arbitrary given and suppose that there exists a natural

ν := ν(λ) such that K(λI − T ) = (λI − T )ν(X). Then we have

(λI − T )ν(X) = K(λI − T ) = (λI − T )(K(λI − T )) = (λI − T )ν+1(X),

thus q(λI − T ) ≤ ν, so T ∗ has SVEP at λ, hence T satisfies (gab) by Theorem 3.5.

(ii) ⇔ (iv) Every semi B-Fredholm operator has topological uniform ascent ([20]),
so, by [31, Corollary 2.8],

H0(λI − T ) +K(λI − T ) = N∞(λI − T ) + (λI − T )∞(X),

for every λ ∈ Σg
a(T ).

(i)⇔ (v) Suppose that T satisfies property (gab). By Theorem 3.5 then T ∗ has SVEP
at every λ ∈ Σg

a(T ), hence, by Theorem 2.4, q := q(λI − T ) < ∞ for all λ ∈ Σg
a(T ).

Therefore, (λI − T )∞(X) = (λI − T )q(X) for all λ ∈ Σg
a(T ).

Conversely, suppose that (v) holds and λ ∈ Σg
a(T ). Then

(λI − T )ν(X) = (λI − T )∞(X) ⊆ (λI − T )ν+1(X),
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and since (λI − T )n+1(X) ⊆ (λI − T )n(X) holds for all n ∈ N, we then obtain that
(λI − T )ν(X) = (λI − T )ν+1(X). Hence q(λI − T ) ≤ ν, so, by Theorem 2.4, T ∗ has
SVEP at every λ ∈ Σg

a(T ). Consequently, by Theorem 3.5, T satisfies property (gab) .

Theorem 3.11. If T ∈ L(X) then T ∗ has property (gab) if and only if H0(λI − T ) is
closed for all λ ∈ Σg

a(T
∗).

Proof. Suppose that T ∗ has property (gab). By Theorem 3.5 then Σg
a(T

∗) ⊆
isoσ(T ∗) = iso σ(T ), so both T and T ∗ have SVEP at the points of Σg

a(T
∗). Let

λ ∈ Σg
a(T

∗) = ∆g(T ∗) ∪ Πa(T
∗). If λ ∈ ∆g(T ∗) then λI − T ∗ is B-Weyl, hence quasi-

Fredholm. Then also λI − T is quasi-Fredholm, by [34, Theorem2.1], and since T has
SVEP at λ, Theorem 2.4 implies that H0(λI−T ) is closed. If λ ∈ Πa(T

∗) then λI−T ∗
is left Drazin invertible and hence by [4, Theorem 2.1], λI−T is right Drazin invertible,
in particular quasi-Fredholm, so the SVEP of T at λ entails, always by Theorem 2.4,
that H0(λI − T ) is closed.

Conversely, suppose that H0(λI − T ) is closed for all λ ∈ Σg
a(T

∗). If λ ∈ ∆g(T ∗)
then λI − T ∗ is B-Weyl, and hence, as above, λI − T is quasi- Fredholm and the
condition H0(λI − T ) closed implies, always by Theorem 2.4, that T has SVEP at
λ. By Theorem 2.5 we then conclude that λI − T is Drazin invertible, and hence
λ ∈ isoσ(T ) = isoσ(T ∗). If λ ∈ Πa(T

∗) then λI − T ∗ is left Drazin invertible, so
λI − T is right Drazin invertible. Since H0(λI − T ) is closed, then T has SVEP
at λ, and hence λI − T is Drazin invertible, always by Theorem 2.5. Consequently,
λ ∈ isoσ(T ) = isoσ(T ∗). Therefore, Σg

a(T
∗) ⊆ isoσ(T ∗) and hence T ∗ has property

(gab) by Theorem 3.5.

An operator T is said finite polaroid if every λ ∈ isoσ(T ) is a pole of finite rank, or
equivalently λI − T is Browder.

Theorem 3.12. Let T ∈ L(X) be finite polaroid. Then T satisfies property (gab) if
and only if K(λI − T ) has finite codimension for all λ ∈ Σg

a(T ).

Proof. By Theorem 3.5 property (gab) entails the inclusion Σg
a(T ) ⊆ isoσ(T ), so, if

λ ∈ Σg
a(T ) then λI−T is Browder. Observe that β(λI−T ) <∞ implies β(λI−T )n <

∞ for every n ∈ N. Since λ is a pole, then K(λI − T ) = (λI − T )p(X) has finite
codimension, where p is the order of the pole, see [1].

Conversely, suppose that K(λI − T ) has finite codimension for all λ ∈ Σg
a(T ). If

λ ∈ Σg
a(T ) then either λ ∈ ∆g(T ) or λ ∈ Πa(T ). If λ ∈ ∆g(T ), from the inclusion

K(λI − T ) ⊆ (λI − T )(X) we see that also (λI − T )(X) has finite codimension, hence
β(λI − T ) <∞. Since λI − T is B-Weyl then α(λI − T ) = β(λI − T ) <∞, so λI − T
is Weyl. The condition codimK(λI − T ) < ∞ entails, that T ∗ has SVEP at λ, or
equivalently q(λI−T ) <∞, see [1, Theorem 3.18]. By [1, Theorem 3.4] it then follows
that λ is a pole, hence ∆g(T ) ⊆ iso σ(T ). Consider the other case that λ ∈ Πa(T ).
Then p(λI−T ) <∞ and, as above, the inclusion K(λI−T ) ⊆ (λI−T )(X) implies that
β(λI − T ) < ∞. Therefore, λI − T is lower semi-Fredholm and hence the condition
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K(λI − T ) has finite codimension implies, again by [1, Theorem 3.18], implies that
q(λI − T ) < ∞, from which we conclude that also Πa(T ) ⊆ isoσ(T ). Consequently,
Σg
a(T ) ⊆ iso σ(T ), and Theorem 3.5 then implies that T has property (gab).

An operator T ∈ L(X) is said to be a-polaroid if every isolated point of σa(T ) is a
pole, while T ∈ L(X) is said to be polaroid is every isolated point of σ(T ) is a pole.
Since isoσ(T ) ⊆ isoσa(T ) (it is known that every isolated point of σ(T ) belongs to
σa(T )), then every a-polaroid operator is polaroid, while the converse, in general, is
not true. Note that T ∈ L(X) is polaroid if and only if T ∗ is polaroid. Evidently, if T
is a-polaroid then Πa(T ) = Π(T ), since every λ ∈ Πa(T ) is an isolated point of σa(T ).

Theorem 3.13. Let T ∈ L(X) be a-polaroid.

(i) Property (gb), property (b) and a-Browder’s theorem are equivalent for T .

(ii) Property (gab), property (ab) and Browder’s theorem are equivalent for T .

Proof. The equivalences in (i) has been observed in [10, Theorem 3.10]. By Corollary
3.6, to show the equivalences in part (ii), we need only to show that Browder’s theorem
implies property (gab). If T satisfies Browder’s theorem, or equivalently generalized
Browder’s theorem, then ∆g(T ) = Π(T ). Since T is a-polaroid then Πa(T ) = Π(T ), so
∆g(T ) = Πa(T ), hence T has property (gab).

The results (i) and (ii) of Theorem 3.13 cannot be extended to polaroid operators.
In [10, Example 3.7] is given an example of polaroid operator that satisfies a-Browder’s
theorem but not property (gb). If T is defined as in Example 3.8, then T is polaroid
and satisfies Browder’s theorem, since T has SVEP, while property (gab) does not hold
for T .

In the sequel we denote by accF the set of all cluster points of a subset F ⊆ C. It
is known that, in general, the equality σa(T ) = σa(T + K), where K is a finite rank
operator which commutes with T , does not hold. Actually, we have

accσa(T ) = acc σa(T +K),

while the isolated points of σa(T ) and σa(T +K) may be different.

Lemma 3.14. Suppose that T,K ∈ L(X) commute and that Kn is a finite rank op-
erator for some n ∈ N. If iso σa(T ) = isoσa(T + K) then σa(T ) = σa(T + K) and
σ(T ) = σ(T +K).

Proof. By [36, Theorem 2.2] we have

accσa(T ) = acc σa(T +K)

and

accσ(T ) = acc σ(T +K).

Hence

σa(T +K) = isoσa(T +K) ∪ accσa(T +K) = iso σa(T ) ∪ accσa(T ) = σa(T ).
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To show that σ(T ) = σ(T +K), observe first that if λ ∈ isoσ(T ), then λ ∈ σa(T ) and
hence, λ ∈ isoσa(T ) = iso σa(T +K). Therefore

σ(T ) = isoσ(T ) ∪ accσ(T ) ⊆ isoσa(T ) ∪ accσ(T )

= iso σa(T +K) ∪ accσ(T +K) ⊆ σa(T +K) ∪ accσ(T +K)

⊆ σ(T +K)

Since K commutes with T +K, a symmetric argument shows σ(T +K) ⊆ σ((T +K)−
K) = σ(T ). Therefore, σ(T ) = σ(T +K).

Theorem 3.15. Suppose that T,K ∈ L(X) commute and that Kn is a finite rank
operator for some n ∈ N. Furthermore, assume that iso σa(T ) = isoσa(T + K). If T
has property (gab) then also T +K has property (gab).

Proof. We have σd(T ) = σd(T + K) and σld(T ) = σld(T + K), see [35, Theorem
2.11], or [13, Theorem 2.8]. By Lemma 3.14 we then obtain Π(T ) = Π(T + K) and
Πa(T ) = Πa(T +K).

Now, assume that T has property (gab). Then Browder’s theorem holds for T and
it is well known that the Weyl spectrum and the Browder spectrum are stable under
Riesz commuting perturbations, so Browder’s theorem holds for T + K, since K is a
Riesz operator. Property (gab) for T entails, by Theorem 3.5, that Π(T ) = Πa(T ), and
hence Π(T ) = Π(T +K) = Πa(T ) = Πa(T +K), so, again by Theorem 3.5, T +K has
property (gab).

Clearly, ifN is a nilpotent operator which commutes with T , then σa(T ) = σa(T+N),
so Theorem 3.15 applies to nilpotent commuting perturbations. The result of Theorem
3.15 cannot applied to a commuting quasi-nilpotent perturbation Q, although σa(T ) =
σa(T+Q). Under the very special condition isoσub(T ) = ∅ we have Πa(T+Q) = Πa(T )
and σubw(T + Q) = σubw(T ), see [25, Corollary2.8 and Corollary 2.1], from which it
follows that, under this condition, the property (gab) for T entails property (gab) for
T +Q.

Theorem 3.16. Suppose that T,K ∈ L(X) commute and that Kn is a finite rank
operator for some n ∈ N. If isoσa(T ) = ∅ and T has property (gab) then also T + K
has property (gab).

Proof. The condition isoσa(T ) = ∅ implies that also isoσa(T + K) = ∅ (the proof
of this is exactly the same of [3, Lemma 2.6], where was considered a finite rank
operator). Thus, we are in the situation of Theorem 3.15, hence T transfers property
(gab) to T +K.

Open Access: This article is distributed under the terms of the Creative Commons
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