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Nonlinear elliptic systems
with variable exponents and measure data

Mostafa Bendahmanea and Fares Mokhtarib

Abstract. In this paper we prove existence results for distributional solutions of nonlinear
elliptic systems with a measure data. The functional setting involves Lebesgue-Sobolev spaces as

well as weak Lebesgue (Marcinkiewicz) spaces with variable exponents W
1,p(·)
0 (Ω) and Mp(·)(Ω)

respectively.
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1. Introduction

Let Ω be a bounded open set in RN (N ≥ 2) with Lipchitz boundary ∂Ω. Our aim is
to prove the existence of at least one distributional solution u = (u1, . . . , um)> (m ≥ 1)
to the nonlinear elliptic system

−
N∑
l=1

∂

∂xl
σl

(
x,
∂u

∂xl

)
= µ, in Ω,

u = 0, on ∂Ω,

(1.1)

where the right-hand side µ = (µ1, . . . , µm)> is a given vector-valued Radon measure
on Ω of finite mass.
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We assume that the vector fields σl : Ω × Rm → Rm, l = 1, . . . , N , satisfy the
following conditions concerning continuity, coercivity, growth, and strict monotonicity:

σl(x, ξ) is measurable in x ∈ Ω for every ξ ∈ Rm and

σl(x, ξ) is continuous in ξ ∈ Rm for a.e. x ∈ Ω;

σl(x, ξ) · ξ ≥ c1 |ξ|p(x) − c2, ∀(x, ξ) ∈ Ω× Rm;

|σl(x, ξ)| ≤ c′1 |ξ|
p(x)−1 + |h|, ∀(x, ξ) ∈ Ω× Rm, h ∈ L

p(·)
p(·)−1 (Ω,Rm); (1.2)

and for all x ∈ Ω, and all ξ, ξ′ ∈ Rm,

(σl(x, ξ)− σl(x, ξ′)) · (ξ − ξ′) ≥

{
c3 |ξ − ξ′|p(x) , if p(x) ≥ 2,

c4
|ξ−ξ′|2

(|ξ|+|ξ′|)2−p(x) , if 1 < p(x) < 2,
(1.3)

for some positive constants c1, c2, c
′
1, c3, c4. We assume that the variable exponents p(·)

is continuous function on Ω and

2− 1

N
< p(x) < N, ∀x ∈ Ω. (1.4)

Note that this condition is classical (this can be found in [5] and [8] for single and
system of elliptic equation, respectively, with constant exponents (p(·) = p constant)).
Under the assumption (1.4), this work proves existence and regularity solutions for
distributional solutions. Inspired by this work, we extend the result on the previous
work of Dolzmann et al [8] to the nonlinear elliptic systems with a measure data and
with variable exponents. The existence result and the method rely heavily on the paper
[8]. To our knowledge, the system (1.1) with variable exponents is new and has never
been studied before.

One of our motivations for studying (1.1) comes from applications to electro-rheological
fluids as an important class of non-Newtonian fluids (sometimes referred to as smart
fluids). The electro-rheological fluids are characterized by their ability to drastically
change the mechanical properties under the influence of an external electromagnetic
field. A mathematical model of electro-rheological fluids was proposed in [12, 13].
Other important application is related to image processing [6] where this kind of the
diffusion operator is used to underline the borders of the distorted image and to elim-
inate the noise. We mention also that our space appears in the study of the elasticity
[17] and of the calculus of variations with variable exponents [1]. The study of (1.1)
is a new and interesting topic when the data is measure data. The scalar case (m=1)
and L1 or measure data, can be found in [4, 11]. If m = 1, µ ∈ L1(Ω), and under
the additional hypothesis that the variable exponent p(·) > 1 is log-Hölder continuous
(2.1), similar results are established in [14] and references therein. We cite the papers
([2],[15],[16]) and references therein (m = 1), where other types of elliptic problems
were also considered. The classical case p(x) = p (a constant), was treated in [8] for
the isotropic case (see also [3] for the anisotropic case). In this paper we will use the
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so-called (right-)angle condition:

∀x ∈ Ω, ∀ξ ∈ Rm, and ∀a ∈ Rm with |a| ≤ 1,

σl(x, ξ) · [(I − a⊗ a) ξ] ≥ 0, l = 1, . . . , N,
(1.5)

where (I − a⊗ a) is the rank m− 1 orthogonal projector onto the space orthogonal to
the unit vector a ∈ Rm. If σi,l, i = 1, . . . ,m, denotes the components of the vector σl,
then the angle condition can be stated more explicitly as

m∑
i,j=1

σi,l(x, ξ)ξj(δi,j − aiaj) ≥ 0.

A prototype example that is covered by our assumptions is the p(x)-harmonic, system

−
N∑
l=1

∂

∂xl

( ∣∣∣∣ ∂u∂xl
∣∣∣∣p(x)−2

∂u

∂xl

)
= µ. (1.6)

We would like to stress that the method used in the constant case [3, 8] cannot be
applied here because the operator and nonlinearity are not homogeneous. The essen-
tially difficulties introduced in extending the results of single equation to systems, is
to obtain truncation estimate, since truncation behaves quite differently for scalar and
vector functions. As the exponent which appear in (1.6) depends on the variable x,
the functional setting involves Lebesgue and Sobolev spaces with variable exponent

Lp(·)(Ω) and W
1,p(·)
0 (Ω). The existence of the solutions to the non-Newtonian fluids

model with regular data (in L∞) will be the subject of a forthcoming paper (recall that
there is no result for Navier-stokes equations with source and initial measure data).

In this paper, we prove the existence of a solution to (1.1) where the variable ex-
ponents p(·) is assumed to be merely continuous function. The proof is based on the
usual strategy of deriving a priori estimates for a sequence of suitable approximate
solutions (uε)0<ε≤1 (for which existence is straightforward to prove) and then to pass
to the limit as ε→ 0.

The remaining part of this paper is organized as follows: Section 2 is devoted to
mathematical preliminaries, including a brief discussion of Sobolev spaces with variable
exponents. We also prove a weak Lebesgue space estimate that will be used later to
obtain a priori estimates for our approximate solutions. The main existence result is
stated and proved in Section 3. Finally, in Section 4 we discuss some extensions.

2. Mathematical preliminaries

We recall in what follows some definitions and basic properties of the generalized

Lebesgue-Sobolev spaces Lp(·)(Ω), W 1,p(·)(Ω) and W
1,p(·)
0 (Ω), where Ω is an open sub-

set of RN . We refer to Fan and Zhao [9] for further properties of variable exponent
Lebesgue-Sobolev spaces.

The continuous real-valued function p : Ω→ [1,+∞) satisfies the log-continuity if

∀x, y ∈ Ω, |x− y| < 1, |p(x)− p(y)| < w(|x− y|), (2.1)
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where lim sup
α→0+

w(α)ln

(
1

α

)
< +∞. Let p− = min

x∈Ω
p(x) and p+ = max

x∈Ω
p(x). We define

the variable exponent Lebesgue space

Lp(·)(Ω) =

{
u : Ω→ R measurable |

∫
Ω

|u(x)|p(x) dx <∞
}
.

We define a norm, the so-called Luxemburg norm, on this space by the formula

‖u‖Lp(·)(Ω) = ‖u‖p(·) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

The following inequality will be used later

min
{
‖u‖p−p(·) , ‖u‖

p+
p(·)

}
≤
∫

Ω

|u(x)|p(x) dx ≤ max
{
‖u‖p−p(·) , ‖u‖

p+
p(·)

}
. (2.2)

If p− > 1, then Lp(·)(Ω) is reflexive and the dual space of Lp(·)(Ω) can be identified with

Lp
′(·)(Ω), where

1

p(·)
+

1

p′(·)
= 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp

′(·)(Ω) the Hölder

type inequality ∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖u‖p(·)‖v‖p′(·) (2.3)

holds true.
We define also the variable Sobolev space

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
,

which is a Banach space under the norm

‖u‖W 1,p(·)(Ω) = ‖u‖p(·) + ‖∇u‖p(·)

We define also W
1,p(·)
0 (Ω) := C∞c (Ω)

W 1,p(·)(Ω)
. Assuming p− > 1 the spaces W 1,p(·)(Ω)

and W
1,p(·)
0 (Ω) are separable and reflexive Banach spaces.

Remark 2.1. Log-continuity condition (2.1) is used to obtain several regularity results
for Sobolev spaces with variable exponents; in particular, C∞(Ω) is dense in W 1,p(·)(Ω)

and W
1,p(·)
0 (Ω) = W 1,p(·)(Ω) ∩W 1,1

0 (Ω). Moreover, if p satisfies the log-continuity (2.1)
and 1 < p− ≤ p+ < N , then the Sobolev embedding holds also (see e.g. [7] for more
details) W 1,p(·)(Ω) ⊂ Lp

?(·)(Ω).

Definition 2.1. Let q(·) be a measurable function such that q− > 0. We say that a
measurable function u belongs to the Marcinkiewicz space Mq(·)(Ω) if there exists a
positive constant M such that∫

{|u|>t}
tq(x) dx ≤M, for all t > 0.

We remark that for q(·) = q constant this definition coincides with the classical
definition of the Marcinkiewicz space Mq(Ω).



112 MOSTAFA BENDAHMANE AND FARES MOKHTARI

Lemma 2.1. Let p(·) be a continuous function on Ω and g a nonnegative function in

W
1,p(·)
0 (Ω). Suppose p(·) < N , and that there exists a constant c such that∫

{g≤γ}
|∇g|p(x) dx ≤ c(γ + 1), ∀γ > 0. (2.4)

Then there exists a constant C, depending on c, such that∫
{|g|>t}

tq(x) dx ≤ C, ∀ t > 0.

for all continuous functions q(·) satisfying

1 ≤ q(x) <
N(p(x)− 1)

N − p(x)
, ∀x ∈ Ω (2.5)

Proof. First, let q+ be a constant satisfying

1 ≤ q+ < min
x∈Ω

N(p(x)− 1)

N − p(x)
=
N(p− − 1)

N − p−
. (2.6)

Using the techniques of proof of in [8] for the constant case, we have

g ∈M
N(p−−1)

N−p− (Ω), (2.7)

and we can therefore conclude that

‖g‖Mq+ (Ω) ≤ C for all 1 ≤ q+ <
N(p− − 1)

N − p−
,

for some C > 0. In particular, there exists a constant C ′ > 0 such that

‖g‖L1(Ω) ≤ C ′. (2.8)

Now let us consider a continuous variable exponent q(·) on Ω satisfying the pointwise
estimate (2.5). By the continuity of p(·) and q(·) on Ω there exists a constant δ > 0
such that

max
y∈B(x,δ)∩Ω

q(y) < min
y∈B(x,δ)∩Ω

N(p(y)− 1)

N − p(y)
for all x ∈ Ω. (2.9)

Observe that Ω is compact and therefore we can cover it with a finite number of balls
(Bi)i=1,...,k. Moreover, there exists a constant α > 0 such that

δ > |Ωi| > α, Ωi = Bi ∩ Ω ∀ i = 1, . . . , k. (2.10)

We denote by q+
i (respectively p−i ) the local maximum of q on Ωi (respectively the local

minimum of p on Ωi). By (2.4) and the fact that p−i ≤ p(x) on Ωi, we have for γ > 0∫
Ωi

|∇Tγ(g)|p
−
i dx ≤ C4(γ + 1), i = 1, . . . , k. (2.11)

In view of (2.8) and (2.10), we deduce

|Tγ(g)i| ≤
C ′

α
, Tγ(g)i =

1

|Ωi|

∫
Ωi

Tγ(g(x))dx.. (2.12)
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By Poincar-Wirtinger inequality and (2.12), we obtain

‖Tγ(g)‖
Lp−

i
∗

(Ωi)
≤ C5 + C5‖∇Tγ(g)‖

Lp−
i (Ωi)

so that, by (2.11), we get for all γ ≥ 1:∫
Ωi

|Tγ(g)|p
−
i

∗
≤ C6 + C7γ

p−
i
∗

p−
i ≤ C8γ

p−
i
∗

p−
i .

Put

λig(γ) = |{x ∈ Ωi : |g(x)| > γ}| , γ ≥ 0, i = 1, . . . , k.

Taking into account that |λig(γ)| ≤ |Ω|γ
−

N(p−
i
−1)

N−p−
i for all γ ≤ 1, we get

λig(γ) ≤ γ−p
−
i

?
∫

Ωi

|Tγ(g)|p
−
i

?

dx ≤ C8γ
−

N(p−
i
−1)

N−p−
i , ∀γ > 0, ∀ i = 1, . . . , k.

Finally, since q+
i ≥ q(x) for all x ∈ Ωi and all i = 1, . . . , k, the proof of Lemma 2.1 is

completed. �

2.1. Truncation function. For any γ > 0, define the spherial (radially symmetric)
truncation function Tγ : Rm → Rm by

Tγ(r) :=

{
r, if |r| ≤ γ,
r
|r|γ, if |r| > γ.

(2.13)

This function will be used repeatedly to derive a priori estimates for our approximate
solutions. Observe that

DTγ(r) =

{
I, if |r| < γ,
γ
|r|

(
I − r⊗r

|r|2
)
, if |r| > γ.

In particular, (1.5) implies for all ξ, r ∈ Rm the crucial property

σl(x, ξ) ·DTγ(r)ξ ≥ σl(x, ξ) · ξ χ|r|<γ, l = 1, . . . , N. (2.14)

We refer to Landes [10] for a discussion of Tγ and other test functions for elliptic
systems, which indeed is a delicate issue.

3. Existence of a solution

3.1. Statement of main theorem.

Definition 3.1. A distributional solution of (1.1) is a vector-valued function u : Ω→
Rm satisfying

u ∈ W 1,1
0 (Ω;Rm), σl

(
x,
∂u

∂xl

)
∈ L1(Ω;Rm), l = 1, . . . , N, (3.1)
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and for all ϕ ∈ C∞c (Ω;Rm),∫
Ω

N∑
l=1

σl
(
x,
∂u

∂xl

)
· ∂ϕ
∂xl

dx =

∫
Ω

ϕdµ.

Theorem 3.1. Suppose (1.2)-(1.5) hold. Let µ = (µ1, . . . , µm)> be a Radon measure on
Ω of finite mass. Then there exists at least one distributional solution u = (u1, . . . , um)>

of (1.1). Moreover,

u ∈Mq(·)(Ω;Rm),
∂u

∂xi
∈Mq̃(·)(Ω;Rm), ∀i = 1, ..., N, (3.2)

for all continuous functions q(·) and q̃(·) such that

1 ≤ q(x) <
N(p(x)− 1)

N − p(x)
and 1 ≤ q̃(x) <

N(p(x)− 1)

N − 1
, ∀x ∈ Ω. (3.3)

3.2. Approximate solutions. Let (fε)0<ε≤1 ⊂ C∞c (Ω;Rm) be a sequence defined by
fε = µ?ωε, where ωε(x) = 1

εN
ω0

(
x
ε

)
≥ 0 and ω0 is a nonnegative function in C∞c (B(0, 1))

with
∫
ω0 dx = 1. It is always understood that ε takes values in a sequence in (0,∞)

tending to zero. Clearly,

|fε| ≤ C(ε) and

∫
Ω

|fε| dx ≤ |µ|,

fε
?
⇀ µ in the sense of measures as ε→ 0.

(3.4)

Then the result in [4], provide us with the existence of a sequence of functions

(uε)0<ε≤1 ⊂ W
1,p(·)
0 (Ω;Rm),

each of them satisfying the weak formulation∫
Ω

N∑
l=1

σl
(
x,
∂uε
∂xl

)
· ∂ϕ
∂xl

dx =

∫
Ω

fε · ϕdx, ∀ϕ ∈ W 1,p(·)
0 (Ω;Rm). (3.5)

Now the proof of Theorem 3.1 consists of two main steps. First, we prove ε-uniform
estimates in weak Lebesgue spaces for uε and ∇uε. Second, we pass to the limit in
(3.5) as ε→ 0.

3.3. Uniform estimates.

Lemma 3.1. There exists a constant c, not depending on ε, such that∫
{|uε|≤γ}

|∇uε|p(x) dx ≤ c(γ + 1), ∀γ > 0. (3.6)

Proof. Inserting ϕ = Tγ(uε) into (3.5) gives∫
Ω

N∑
l=1

σl
(
x,
∂uε
∂xl

)
·DTγ(uε)

∂uε
∂xl

dx =

∫
Ω

fε · Tγ(uε) dx.

Using (2.14) and the coercivity condition in (1.2), we obtain (3.6). �
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Lemma 3.2. There exists a constant C, not depending on ε, such that∫
{|uε|>t}

tq(x) dx ≤ C, ∀ t > 0, (3.7)

and ∫
{|∇uε|>t}

tq̃(x) dx ≤ C, ∀ t > 0. (3.8)

where the variable exponents q(·) and q̃(·) are defined in (3.3).

Proof. By Lemma 3.1 and |∇|uε|| ≤ |∇uε| yield∫
{|uε|≤γ}

|∇|uε||p(x) dx ≤ C9(γ + 1).

Applying Lemma 2.1 to |uε| we obtain (3.7). For the proof of estimate (3.8), we start
by the case

q̃+ <
N(p− − 1)

N − 1
. (3.9)

Following [8], we obtain

λ|∇uε|(α) = |{x ∈ Ω : |∇uε| > α}| ≤ C10α
−N(p−−1)

N−1 , α > 0. (3.10)

This proves that ∥∥∥∥∂uε∂xi

∥∥∥∥
Mq̃+ (Ω;Rm)

≤ C11, i = 1, . . . , N.

Now let us consider a continuous variable exponent q̃(·) on Ω satisfying only the point-
wise estimate

1 ≤ q̃(x) <
N(p(x)− 1)

N − 1
, x ∈ Ω.

By the continuity of p(·) and q̃(·) on Ω there exists a constant δ′ > 0 such that

max
y∈B(x,δ′)∩Ω

q̃(y) < min
y∈B(x,δ′)∩Ω

N(p(y)− 1)

N − 1
for all x ∈ Ω.

We can then cover Ω with a finite number of balls still denoted by (Bi)i=1,...,k such that

q̃+
i = max

x∈Ωi

q̃(x) < min
x∈Ωi

N(p(x)− 1)

N − 1
=
N(p−i − 1)

N − 1
, Ωi = Bi ∩ Ω.

Arguing locally in (3.10), we obtain

|{x ∈ Ωi : |∇uε| > α}| ≤ C12α
−

N(p−
i
−1)

N−1 , α > 0.

Finally, we get∫
{|∇uε|>α, x∈Ω}

αq̃(x)dx ≤ k|Ω|+
k∑
i=1

∫
{|∇uε|>α, x∈Ωi}

αq̃
+
i dx ≤ C13.

This ends the proof of lemma. �
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Remark 3.1. Note that the result obtained in Lemma 3.2 also holds for any measurable
function q : Ω→ [1,+∞) (resp. q̃ : Ω→ [1,+∞)) such that

b := ess inf
x∈Ω

(N(p(x)− 1)

N − p(x)
− q(x)

)
> 0,

(
resp. b := ess inf

x∈Ω

(N(p(x)− 1)

N − 1
− q̃(x)

)
> 0

)
In fact, in this case there exists a continuous function s(·) (resp. s′(·)) such that

s(x) ≥ q(x) (resp. s′(x) ≥ q̃(x)) for almost every x ∈ Ω,

and

min
x∈Ω

(N(p(x)− 1)

N − p(x)
−s(x)

)
(> b/2) > 0,

(
resp. min

x∈Ω

(N(p(x)− 1)

N − 1
− s′(x)

)
(> b/2) > 0

)
.

From Lemma 3.2, we deduce the bound of uε inMs(·)(Ω;Rm) and the bound of ∇uε ∈
Ms′(·)(Ω;Rm). Finally the result follows from to the continuous embedding Ms(·)(Ω)
into Mq(·)(Ω) (resp. Ms′(·)(Ω) into Mq̃(·)(Ω)).

3.4. Strong convergence. From Lemma 3.2, uε is uniformly bounded in Ls0(.)(Ω;Rm)

for some continuous functions s0(·) < N(p(·)−1)
N−p(·) with s0(·) > N(p(·)−1)

N−1
, and ∂uε

∂xi
is uni-

formly bounded in Lq̃(·)(Ω;Rm) for all i = 1, . . . , N and some continuous functions q̃(·)
such that

max{p(x)− 1, 1} < q̃(x) <
N(p(x)− 1)

N − 1
, x ∈ Ω.

From this we get that uε is uniformly bounded in the Sobolev space

W 1,s
0 (Ω;Rm), s = min

x∈Ω
q̃(x).

Consequently, we can assume (without loss of generality) that as ε→ 0

uε → u a.e. in Ω and in Ls(Ω;Rm),

uε ⇀ u in W 1,s
0 (Ω;Rm),∣∣∣∣∂uε∂xl

− ∂u

∂xl

∣∣∣∣⇀ hl in Ls(Ω), l = 1, . . . , N,

σl
(
x,
∂uε
∂xl

)
⇀ βl in L

q̃(·)
p(·)−1 (Ω;Rm), l = 1, . . . , N,

fε
?
⇀ µ in the sense of measures on Ω.

(3.11)

Herein, the convergences obtained in (3.11) are not strong enough if we want to pass
to the limit ε→ 0 in the nonlinear system (3.5), and the proof of Theorem 3.1 will be
completed by Lemma 3.3 below. To prove this lemma we follow closely the argument
used in [8] for the p-harmonic system, which is based on using a regularized test function
and a localization procedure to handle the problem that u does not in general belong

to the Sobolev space W
1,p(·)
0 (Ω,Rm).
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Lemma 3.3. For l = 1, . . . , N , as ε→ 0 we have

σl
(
x,
∂uε
∂xl

)
→ σl

(
x,
∂u

∂xl

)
a.e. in Ω and in L1(Ω;Rm). (3.12)

Proof. The main part of the proof consists in showing that

hl(x) = 0 for a.e. x ∈ Ω, l = 1, . . . , N, (3.13)

where hl is defined in (3.11). Suppose for the moment the validity of (3.13), and fix
any one of the directions l = 1, . . . , N . Then, by Vitali’s theorem,

∂uε
∂xl
→ ∂u

∂xl
in L1(Ω;Rm),

and, after extracting a subsequence if necessary, ∂uε
∂xl
→ ∂u

∂xl
a.e. in Ω. From this we

also have σl
(
x, ∂uε

∂xl

)
→ σl

(
x, ∂u

∂xl

)
a.e. in Ω. As σl

(
x, ∂uε

∂xl

)
is uniformly bounded in

L
q̃(·)

p(·)−1 (Ω;Rm), by (2.2), Vitali’s theorem gives

σl
(
x,
∂uε
∂xl

)
→ σl

(
x,
∂u

∂xl

)
in Lt(·)(Ω;Rm),

for any continuous function t such that 1 ≤ t(·) < q̃(·)
p(·)−1

, which proves (3.12).

We now set out to prove (3.13). Choose a nonnegative function α ∈ C∞([0,∞) ∩
L∞([0,∞)) such that α(t) = t for t ∈ [0, δ] for some δ > 0, α′ ≥ 0, and α′(t)t ≤ α(t) for
all t ≥ 0 (see [8] for an explicit example of such a function). Then define the function
ψ : Rm → Rm by

ψ(r) =
r

|r|
α(|r|),

and note that ψ(r) = r when |r| ≤ δ. We also need two scalar functions η, φ of the
following type:

η ∈ C∞c (Rm), 0 ≤ η ≤ 1, supp(η) ⊂ [0, δ),

φ ∈ C∞c (Rn), 0 ≤ φ ≤ 1,

∫
φ dx = 1.

In what follows, let us fix any one of the directions l = 1, . . . , N . Denoting by v
a comparison function in C1(Ω;Rm) (to be chosen later), we proceed by using the
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triangle and Hölder inequalities:

∫
Ω

N∑
l=1

∣∣∣∣∂uε∂xl
− ∂u

∂xl

∣∣∣∣ η(uε − v)φ dx

≤
∫

Ω

N∑
l=1

∣∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣∣ η(uε − v)φ dx+

∫
Ω

N∑
l=1

∣∣∣∣ ∂v∂xl − ∂u

∂xl

∣∣∣∣ η(uε − v)φ dx

≤ 2
N∑
l=1

∥∥∥∥∣∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣∣ (η(uε − v)φ)
1

p(x)

∥∥∥∥
Lp(·)(Ω)

∥∥∥(η(uε − v)φ)
1

p′(x)

∥∥∥
Lp′(·)(Ω)

+

∫
Ω

N∑
l=1

∣∣∣∣ ∂v∂xl − ∂u

∂xl

∣∣∣∣ η(uε − v)φ dx

≤ 2
N∑
i=1

max

{
A

1
p+

ε ;A
1

p−
ε

}
max

{
B

1− 1
p+

ε ;B
1− 1

p−
ε

}
+

∫
Ω

N∑
l=1

∣∣∣∣ ∂v∂xl − ∂u

∂xl

∣∣∣∣ η(uε − v)φ dx

where

Aε =

∫
Ω

∣∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣∣p(x)

η(uε − v)φ dx and Bε =

∫
Ω

η(uε − v)φ dx.

Equipped with this and (3.11), using in particular that uε → u a.e. and the fact that
η, ψ, Dψ are continuous and bounded functions, we deduce

∫
Ω

N∑
l=1

hl(x)η(u− v)φ dx

≤ 2
N∑
l=1

max
{
Ll

1
p+ ;Ll

1
p−
}

max
{
B

1− 1
p+ ;B

1− 1
p−
}

+

∫
Ω

N∑
l=1

∣∣∣∣ ∂v∂xl − ∂u

∂xl

∣∣∣∣ η(u− v)φ dx,

(3.14)

where

Ll = Ll(η, φ, ψ) := lim sup
ε→0

Aε and B =

∫
Ω

η(u− v)φ dx.

Put

Ω1 = {x ∈ Ω | p(x) ≥ 2} and Ω2 = {x ∈ Ω | 1 < p(x) < 2}.
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We must analyze Ll, and start with the case p(x) ≥ 2. By (1.3),∫
Ω1

c3

∣∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣∣p(x)

η(uε − v)φ dx

≤
∫

Ω1

N∑
l=1

(
σl
(
x,
∂uε
∂xl

)
− σl

(
x,
∂v

∂xl

))
·
(∂uε
∂xl
− ∂v

∂xl

)
η(uε − v)φ dx

≤
∫

Ω

N∑
l=1

(
σl
(
x,
∂uε
∂xl

)
− σl

(
x,
∂v

∂xl

))
· ∂ψ(uε − v)

∂xl
η(uε − v)φ dx

=

∫
Ω

N∑
l=1

σl
(
x,
∂uε
∂xl

)
· ∂ψ(uε − v)

∂xl
φ dx

−
∫

Ω

N∑
l=1

σl
(
x,
∂uε
∂xl

)
· ∂ψ(uε − v)

∂xl
(1− η(uε − v))φ dx

−
∫

Ω

N∑
l=1

σl

(
x,
∂v

∂xl

)
·
(∂uε
∂xl
− ∂v

∂xl

)
η(uε − v)φ dx

=: E1ε + E2ε + E3ε = E(ε), (3.15)

On the set where 1 < p(x) < 2, we write∫
Ω2

∣∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣∣p(x)

η(uε − v)φ dx

=

∫
Ω2

(∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣)p(x)

(∣∣∣∂uε∂xl

∣∣∣+
∣∣∣ ∂v∂xl ∣∣∣) p(x)(2−p(x))

2

(η(uε − v)φ)
p(x)
2

+
2−p(x)

2

(∣∣∣∣∂uε∂xl

∣∣∣∣+

∣∣∣∣ ∂v∂xl
∣∣∣∣)

p(x)(2−p(x))
2

dx

≤ 2

∥∥∥∥∥∥∥∥
(∣∣∣∂uε∂xl

− ∂v
∂xl

∣∣∣)p(x)

(∣∣∣∂uε∂xl

∣∣∣+
∣∣∣ ∂v∂xl ∣∣∣) p(x)(2−p(x))

2

(η(uε − v)φ)
p(x)
2

∥∥∥∥∥∥∥∥
L2/p(·)(Ω2)

×

∥∥∥∥∥
(∣∣∣∣∂uε∂xl

∣∣∣∣+

∣∣∣∣ ∂v∂xl
∣∣∣∣)

p(x)(2−p(x))
2

(η(uε − v)φ)
2−p(x)

2

∥∥∥∥∥
L2/(2−p(·))(Ω2)

≤ 2 max
{
w
p−/2
1ε ;w

p+/2
1ε

}
max

{
w

(2−p−)/2
2ε ;w

(2−p+)/2
2ε

}
(3.16)

where

w1ε =

∫
Ω2

∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣2(∣∣∣∂uε∂xl

∣∣∣+
∣∣∣ ∂v∂xl ∣∣∣)2−p(x)

η(uε − v)φ dx,
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and

w2ε =

∫
Ω2

(∣∣∣∣∂uε∂xl

∣∣∣∣+

∣∣∣∣ ∂v∂xl
∣∣∣∣)p(x)

η(uε − v)φ dx.

We employ (1.3) instead as follows:∫
Ω2

∣∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣∣p(x)

η(uε − v)φ dx

≤ 2 max
{
c
−p−/2
4 E(ε)p

−/2; c
−p+/2
4 E(ε)p

+/2
}

×max
{
w

(2−p−)/2
2ε ;w

(2−p+)/2
2ε

}
.

(3.17)

Thanks to (3.5),

E1ε =

∫
Ω

fε · ψ(uε − v)φ dx−
∫

Ω

N∑
l=1

σl

(
x,
∂uε
∂xl

)
·ψ(uε − v)

∂φ

∂xl
dx. (3.18)

To estimate E2ε note that

Dψ(r) = α′(|r|)r ⊗ r
|r|2

+
α(|r|)
|r|

(
I − r ⊗ r

|r|2

)
,

so that

σl(x, ξ) ·Dψ(r)ξ ≥ 0, ∀ξ, r ∈ Rm.

This follows from (1.5), since

σl(x, ξ) ·Dψ(r)ξ =
α(|r|)
|r|

σl(x, ξ) ·
(
I −

[(
1− α′(|r|) |r|

α(|r|)

)
r ⊗ r
|r|2

])
ξ,

where the term inside the square brackets can be written as a ⊗ a for some a ∈ Rm

with |a| ≤ 1 (recall that α′(t)t ≤ α(t)). Hence

E2ε ≤
∫

Ω

N∑
l=1

σl
(
x,
∂uε
∂xl

)
·Dψ(uε − v)

∂v

∂xl
(1− η(uε − v))φ dx. (3.19)

Since uε → u a.e. and η, ψ, Dψ are continuous and bounded functions, we deduce from
(3.15), (3.18), (3.19), and (3.6) that

Ll1 ≤ sup |ψ|
∫

Ω

φ dµ−
∫

Ω

N∑
l=1

βl · ψ(u− v)
∂φ

∂xl
dx

+

∫
Ω

N∑
l=1

βl ·Dψ(u− v)
∂v

∂xl
(1− η(u− v))φ dx

−
∫

Ω

N∑
l=1

σl
(
x,
∂v

∂xl

)
·
( ∂u
∂xl
− ∂v

∂xl

)
η(u− v)φ dx (3.20)
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where

Ll1 = Ll1(η, φ, ψ) := lim sup
ε→0

∫
Ω1

c3

∣∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣∣p(x)

η(uε − v)φ dx

and

Ll2 = Ll2(η, φ, ψ) := lim sup
ε→0

∫
Ω2

∣∣∣∣∂uε∂xl
− ∂v

∂xl

∣∣∣∣p(x)

η(uε − v)φ dx.

Next, we specify the functions v, η, ψ, φ. Fix any point x = a ∈ Ω that is simultane-
ously a Lebesgue point of ∂u

∂xl
, hl, βl, l = 1, . . . , N , and the measure µ. Choose v as the

first order Taylor polynomial of u around x = a:

v(x) = u(a) +∇u(a)(x− a),

and replace φ, η, ψ in the above calculations by the following functions:

ηρ(r) = η̃
(r
ρ

)
, η̃ ∈ C∞c (B(0, 1)), η̃|B(0, 1

2
) ≡ 1,

φρ(x) =
1

ρn
φ̃
(x− a

ρ

)
, φ̃ ∈ C∞c (B(0, 1)),

∫
φ̃ = 1,

and ψρ(r) = ρψ̃
(
r
ρ

)
. Denote by Ll1(ρ) (resp. Ll2(ρ)) the corresponding Ll1 (resp.

Ll2(ρ)), that is, Ll1(ρ) := Ll1(ηρ, φρ, ψρ) (resp. Ll2(ρ) := Ll2(ηρ, φρ, ψρ)). We deduce
lim sup
ρ→0

Ll1(ρ) = 0, since as ρ→ 0,

1

|B(a, ρ)|

∫
B(a,ρ)

∣∣∣∣u− vρ
∣∣∣∣ dx→ 0,

1

|B(a, ρ)|

∫
B(a,ρ)

N∑
l=1

∣∣∣∣ ∂u∂xl − ∂v

∂xl

∣∣∣∣ dx→ 0,

1

|B(a, ρ)|

∫
B(a,ρ)

N∑
l=1

|βl(x)− βl(a)| dx→ 0,

where the second and third terms in (3.20) tend to zero as we have

ψρ(u− v)
∂φ

∂xl
= O

(u− v
ρ

)
, 1− ηρ(u− v) = O

(u− v
ρ

)
.

The first term tends to zero since

lim sup
ρ→0

µ(B(a, ρ))/ρn <∞,

and thus

sup |ψρ|
∫

Ω

φρ dµ ≤ Cρµ(B(a, ρ))/ρn.



122 MOSTAFA BENDAHMANE AND FARES MOKHTARI

In the case p(x) < 2, we also use that the term max
{
w

(2−p−)/2
2ε ;w

(2−p+)/2
2ε

}
in (3.17)

stays finite in the above localization procedure to obtain lim sup
ρ→0

Ll2(ρ) = 0. Since

1

|B(a, ρ)|

∫
B(a,ρ)

N∑
l=1

|hl(x)− hl(a)| dx→ 0 as ρ→ 0,

it follows, via (3.14), that h(a) = 0. This completes the proof of (3.13), and hence the
lemma. �

Remark 3.2. Since Ω is bounded then (3.2) implies in particular that

u ∈
⋂

s(·)<N(p(·)−1)
N−1

W
1,s(·)
0 (Ω).

Remark 3.3. Remark that in the constant case [8], by (2.7) and (3.10), we have

‖uε‖
M

N(p−1)
N−p (Ω;Rm)

≤ C and

∥∥∥∥∂uε∂xi

∥∥∥∥
M

N(p−1)
N−1 (Ω;Rm)

≤ C, i = 1, . . . , N.

Then (1.1) has at least one weak solution u, possesses the regularity

u ∈M
N(p−1)
N−p (Ω;Rm),

∂u

∂xi
∈M

N(p−1)
N−1 (Ω;Rm), i = 1, . . . , N.

For the nonconstant case, it remains an open problem to show that

u ∈M
N(p(·)−1)
N−p(·) (Ω;Rm),

∂u

∂xi
∈M

N(p(·)−1)
N−1 (Ω;Rm), i = 1, . . . , N,

where p(·) is defined in (1.4).

4. An extension

In this section we show that the results obtained for (1.1) can be extended to more
general elliptic systems of the form

−
N∑
l=1

∂

∂xl
σl
(
x,
∂u

∂xl

)
+ g(x, u) = f, in Ω,

u = 0, in ∂Ω,

(4.1)

where the vector fields σ1, . . . , σN are as before and f = (f1, ..., fm)T ∈ L1(Ω;Rm). We
assume that the nonlinearity g(x, r) : Ω × Rm → Rm is measurable in x ∈ Ω for all
r ∈ Rm, continuous in r for a.e. x ∈ Ω, and satisfies the following conditions:

g(x, r) · r ≥ 0, ∀r ∈ Rm, (4.2)

sup {|g(x, r)| : |r| ≤ τ} ∈ L1(Ω;Rm), ∀τ ∈ R. (4.3)

g(x, r) · (r − r′) ≥ 0, ∀ r , r′ ∈ Rm with |r| = |r′|. (4.4)
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A prototype example of (4.1) is provided by the equation

−
N∑
l=1

∂

∂xl

( ∣∣∣∣ ∂u∂xl
∣∣∣∣p(x)−2

∂u

∂xl

)
+ θ(x)|u|θ(x)u = f ,

for some positive function θ ∈ L∞(Ω).

Remark 4.1. Remark that (4.2) and (4.4) are equivalent if m = 1.

Definition 4.1. A distributional solution of (4.1) is a function u : Ω→ Rm such that
(3.1) and g(x, u) ∈ L1(Ω;Rm) hold, and ∀ϕ ∈ C∞c (Ω;Rm)∫

Ω

N∑
l=1

σl
(
x,
∂u

∂xl

)
· ∂ϕ
∂xl

dx+

∫
Ω

g(x, u)ϕdx =

∫
Ω

ϕf(x) dx.

Our main result is the following.

Theorem 4.1. Let f ∈ L1(Ω;Rm). Then, under the assumptions stated above and in
Section 1, (4.1) has at least one distributional solution u. Moreover, u has regularity
as stated in (3.2).

Proof. Let (fε) be a sequence of bounded functions defined in Ω that converges to f in
L1(Ω;Rm), and which verifies

|fε| ≤ C(ε) and |fε| ≤ |f |
Then, by classical arguments, there exists a sequence of approximate solutions (uε)0<ε≤1

satisfying for all ϕ ∈ W 1,p(·)
0 (Ω;Rm):∫

Ω

N∑
l=1

σl
(
x,
∂uε
∂xl

)
· ∂ϕ
∂xl

dx+

∫
Ω

g(x, uε) · ϕdx =

∫
Ω

fε · ϕdx. (4.5)

Setting

αi =

{ |gi(x,uε)|
gi(x,uε)

, if gi(x, uε) 6= 0

1, if gi(x, uε) = 0
, α = (α1, . . . , αm)T , g = (g1, . . . , gm)T ,

by (4.4), we obtain

g(x, uε)
Nuε
|uε|
− |g(x, uε)| =

N

|uε|

(
g(x, uε) ·

(
uε −

|uε|
N

α

))
≥ 0. (4.6)

Choosing ϕ = Tγ(uε), γ > 0 as test function in (4.5), it follows from (4.2) and (4.6),
that

c1

N∑
l=1

∫
{|uε|≤γ}

∣∣∣∣∂uε∂xl

∣∣∣∣p(x)

dx+
γ

N

∫
{|uε|>γ}

|g(x, uε)| dx ≤
∫

Ω

|f ||Tγ(uε)|. (4.7)

Combining (4.7) and Lemma 3.2, we have for all t > 0∫
|uε|>t

tq(x)dx ≤ C,

∫
| ∂uε
∂xl
|>t
tq̃(x)dx ≤ C, l = 1, . . . , N,
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where C is a constant independent of ε and q(·) and q̃(·) are defined in (3.3). Conse-
quently, we can assume without loss of generality that the convergence in (3.11) hold
for our sequence (uε)0<ε≤1. Using (4.7) and (4.3), we deduce∫

Ω

|g(x, uε)| dx ≤ C,

where C is a constant independent of ε. By (4.7) and (4.3) we obtain that g(x, uε) is
equi-integrable in Ω. Then in view of Vitali’s theorem, g(x, uε) converges strongly in
L1(Ω;Rm) to g(x, u). The proof of Lemma 3.3 remains more or less unchanged, except
that the term E1ε rewrites in our problem (4.1) as

E1ε =

∫
Ω

fεψ(uε − v)φ dx−
∫

Ω

g(x, uε)ψ(uε − v)φ dx

−
∫

Ω

N∑
l=1

σl
(
x,
∂uε
∂xl

)
ψ(uε − v)

∂φ

∂xl
dx, (4.8)

and estimate (3.20) rewrites as

Ll1 ≤ sup |ψ|
(∫

Ω

φ fdx+

∫
Ω

|g(x, u)|φ dx
)

−
∫

Ω

N∑
l=1

βl · ψ(u− v)
∂φ

∂xl
dx

+

∫
Ω

N∑
l=1

βl ·Dψ(u− v)
∂v

∂xl
(1− η(u− v))φ dx

−
∫

Ω

N∑
l=1

σl
(
x,
∂v

∂xl

)
·
( ∂u
∂xl
− ∂v

∂xl

)
η(u− v)φ dx. (4.9)

Letting x = a be a Lebesgue point simultaneously of f , g(x, u), h, u, Du, and β =
(β1, . . . βN), we can proceed as in the proof of Lemma 3.3. �
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