
Moroccan J. Pure and Appl. Anal.(MJPAA) RESEARCH ARTICLE
Volume 1(1), 2015, Pages 22–37
ISSN: 2351-8227

Existence and Stability Results for Nonlinear
Boundary Value Problem for Implicit Differential
Equations of Fractional Order

Mouffak Benchohraa,b and Soufyane Bouriaha

Abstract. In this paper, we establish sufficient conditions for the existence and stability of
solutions for a class of boundary value problem for implicit fractional differential equations with
Caputo fractional derivative. The arguments are based upon the Banach contraction principle.
Two examples are included to show the applicability of our results.
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1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to
arbitrary order (non-integer). See, for example, the books ([2, 3, 6, 9, 10, 24, 25]), the
papers [4, 5, 11] and the references therein.

In recent years, fractional differential equations arise naturally in various fields such
as rheology, fractals, chaotic dynamics, modeling and control theory, signal processing,
bioengineering and biomedical applications, etc; Fractional derivatives provide an ex-
cellent instrument for the description of memory and hereditary properties of various
materials and processes. We refer the reader, for example, to the books [10, 21, 30]
and the references therein.
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The stability problem of functional equations (of group homomorphisms) was raised
by Ulam in 1940 in a talk given at Wisconsin University ([31, 32]). The question
posed by Ulam was ”Under what conditions does there exist an additive mapping near
an approximately additive mapping?” In 1941, Hyers [15] gave the first answer to the
question of Ulam (for the additive mapping) in the case Banach spaces. In 1978, Rassias
established the Hyers-Ulam stability of linear and nonlinear mapping. Jung [17, 18]
investigated in 1988, the Hyers-Ulam stability of more general mapping on restricted
domains. Obloza [23] in 1993, is the first author who has investigated the Hyers-Ulam
stability of linear differential equations. After, many articles and books on this subject
have been published in order to generalize the results of Hyers in many directions. For
more detailed definitions of the Hyers-Ulam stability and the generalized Hyers-Ulam
stability, we refer the reader to the papers [1, 7, 8, 14, 16, 19, 20, 22, 26, 29, 34, 35, 36]
and the books [13, 27, 28]. Let us notice that Ulam-Hyers stability concept is quite
significant in realistic problems in numerical analysis, biology and economics.

The purpose of this paper is to establish four types of Ulam stability, namely Ulam-
Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias and generalized
Ulam-Hyers-Rassias stability for the following problems of implicit fractional-order
differential equations

cDαy(t) = f(t, y(t),cDαy(t)), for every t ∈ J := [0, T ], T > 0, 0 < α ≤ 1 (1)

ay(0) + by(T ) = c (2)

where cDα is the fractional derivative of Caputo, f : J × R × R −→ R a continuous
function, and a, b, c are real constants with a+ b 6= 0, and

cDαy(t) = f(t, y(t),cDαy(t)), for every t ∈ J := [0, T ], T > 0, 0 < α ≤ 1 (3)

y(0) + g(y) = y0 (4)

where g : C ([0, T ] ,R) −→ R a continuous function and y0 a real constant. This type
of non-local Cauchy problem was introduced by Byszewski [12]. The author observed
that the non-local condition is more appropriate than the local condition (initial) to
describe correctly some physics phenomenons [12], and proved the existence and the
uniqueness of weak solutions and also classical solutions for this type of problems. We
take an example of non-local conditions as follows:

g(y) =

p∑
i=1

ciy(ti)

where ci, i = 1, . . . , p are constants and 0 < t1 < . . . < tp ≤ T.
The present results initiate the concept of Ulam stablity for such class of problems.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. By C(J,R) we denote the Banach space of continuous
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functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.
By L1(J) we denote the space of Lebesgue-integrable functions y : J → R with the
norm

‖y‖L1 =

∫ T

0

|y(t)|dt.

Definition 2.1. ([25]) The fractional (arbitrary) order integral of the function h ∈
L1 ([0, T ] ,R+) of order α ∈ R+ is defined by

Iαh(t) =
1

Γ (α)

∫ t

0

(t− s)α−1 h(s)ds,

where Γ is the Euler gamma function defined by Γ (α) =

∫ +∞

0

tα−1e−tdt, α > 0.

Definition 2.2. ([21]) For a function h given on the interval [0, T ] , the Caputo
fractional-order α of h, is defined by

(cDαh)(t) =
1

Γ (n− α)

∫ t

0

(t− s)n−α−1 h(n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 2.1. ([21]) Let α > 0 and n = [α] + 1, then

Iα (cDαf(t)) = f(t)−
n−1∑
k=0

f (k) (0)

k!
tk.

Lemma 2.2. ([25]) Let α > 0, so the homogenous differential equation of fractional
order:

cDαh(t) = 0,

has a solution:
h(t) = c0 + c1t+ c2t

2 + . . .+ cn−1t
n−1,

where ci, i = 1, . . . , n are constants and n = [α] + 1.

We state the following generalization of Gronwall’s lemma for singular kernels.

Lemma 2.3. ([33]) Let υ : [0, T ] −→ [0,+∞) be a real function and ω (.) is a nonneg-
ative, locally integrable function on [0, T ]. Assume that there are constants a > 0 and
0 < α ≤ 1 such that

υ (t) ≤ ω (t) + a

∫ t

0

(t− s)−α υ (s) ds.

Then, there exists a constant K = K (α) such that

υ (t) ≤ ω (t) +Ka

∫ t

0

(t− s)−α ω (s) ds, for every t ∈ [0, T ] .
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For the implicit fractional-order differential equation (1), we adopt the definition in
Rus [29] of the Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-
Rassias stability and generalized Ulam-Hyers-Rassias stability.

Definition 2.3. The equation (1) is Ulam-Hyers stable if there exists a real number
cf > 0 such that for each ε > 0 and for each solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε, t ∈ J,
there exists a solution y ∈ C1 (J,R) of equation (1) with

|z(t)− y(t)| ≤ cfε, t ∈ J.

Definition 2.4. The equation (1) is generalized Ulam-Hyers stable if there exists ψf ∈
C (R+,R+) , ψf (0) = 0, such that for each solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε, t ∈ J,
there exists a solution y ∈ C1 (J,R) of the equation (1) with

|z(t)− y(t)| ≤ ψf (ε) , t ∈ J.

Definition 2.5. The equation (1) is Ulam-Hyers-Rassias stable with respect to ϕ ∈
C (J,R+) if there exists a real number cf > 0 such that for each ε > 0 and for each
solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ εϕ (t) , t ∈ J,
there exists a solution y ∈ C1 (J,R) of equation (1) with

|z(t)− y(t)| ≤ cfεϕ (t) , t ∈ J.

Definition 2.6. The equation (1) is generalized Ulam-Hyers-Rassias stable with respect
to ϕ ∈ C (J,R+) if there exists a real number cf,ϕ > 0 such that for each solution
z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ϕ (t) , t ∈ J,
there exists a solution y ∈ C1 (J,R) of equation (1) with

|z(t)− y(t)| ≤ cf,ϕϕ (t) , t ∈ J.

Remark 2.1. A function z ∈ C1 (J,R) is a solution of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε, t ∈ J,
if and only if there exists a function g ∈ C (J,R) (which depends on solution y) such
that

i): |g(t)| ≤ ε, ∀t ∈ J.
ii): cDαz(t) = f(t, z(t),cDαz(t)) + g(t), t ∈ J.

Remark 2.2. Clearly,

i): Definition (2.6)⇒ Definition (2.7)
ii): Definition (2.8)⇒ Definition (2.9) .
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Remark 2.3. A solution of the implicit fractional differential inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε, t ∈ J,

is called an fractional ε−solution of the implicit fractional differential equation (1).

3. Existence and Ulam-Hyers stability of the boundary value problem

Lemma 3.1. Let 0 < α ≤ 1 and h : [0, T ] −→ R be a continuous function. Then the
linear problem

cDαy(t) = h(t), t ∈ J (5)

ay(0) + by(T ) = c (6)

has a unique solution which is given by:

y(t) =
1

Γ (α)

∫ t

0

(t− s)α−1 h(s)ds

− 1

a+ b

[
b

Γ (α)

∫ T

0

(T − s)α−1 h(s)ds− c
]
.

(7)

Proof. By integration of formula (5) we obtain :

y(t) = y0 +
1

Γ (α)

∫ t

0

(t− s)α−1 h(s)ds. (8)

We use condition (6) to compute the constant y0, so we have:

ay (0) = ay0 and by (T ) = by0 +
b

Γ (α)

∫ T

0

(T − s)α−1 h(s)ds

then, ay (0) + by (T ) = c, since

y0 =
−1

(a+ b)

[
b

Γ (α)

∫ T

0

(T − s)α−1 h(s)ds− c
]
.

Substituting in equation (8) leads to formula (7).

Lemma 3.2. Let f(t, u, v) : J × R × R −→ R be a continuous function, then the
problem (1)-(2) is equivalent to the problem:

y(t) = Ã+ Iαg(t) (9)

where g ∈ C (J,R) satisfies the functional equation

g(t) = f(t, Ã+ Iαg(t), g(t))

and

Ã =
1

a+ b

[
c− b

Γ (α)

∫ T

0

(T − s)α−1 g(s)ds

]
.
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Proof. Let y be solution of (9). We shall show that y is solution of (1)−(2). We
have

y(t) = Ã+ Iαg(t).

So, y(0) = Ã and y(T ) = Ã+
1

Γ (α)

∫ T

0

(T − s)α−1 g(s)ds.

ay(0) + by(T ) =
−ab

(a+ b)Γ(α)

∫ T

0

(T − s)α−1g(s)ds

+
ac

a+ b
− b2

(a+ b)Γ(α)

∫ T

0

(T − s)α−1g(s)ds

+
bc

a+ b
+

b

Γ(α)

∫ T

0

(T − s)α−1g(s)ds.

= c.

Then

y(0) + by(T ) = c.

On the other hand, we have

cDαy(t) = cDα(Ã+ Iαg(t)) = g(t)

= f(t, y(t),cDαy(t)).

Thus, y is solution of problem (1)-(2).

Lemma 3.3. Assume assumption
(H1) there exist two constants K > 0 et 0 < L < 1 such that

|f(t, u, v)− f(t, u, v)| ≤ K |u− u|+ L |v − v| for each t ∈ J and u, u, v, v ∈ R.

If

KTα

(1− L) Γ(α + 1)

(
1 +

|b|
|a+ b|

)
< 1, (10)

the problem (1)-(2) has a unique solution.

Proof. Let the operator

N : C(J,R) −→ C(J,R)

Ny(t) = Ãy +
1

Γ(α)

∫ t

0

(t− s)α−1gy(s)ds,

where

gy(t) = f(t, Ãy + Iαgy(t), gy(t)),

and

Ãy =
1

a+ b

[
c− b

Γ(α)

∫ T

0

(T − s)α−1gy(s)ds
]
.
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By Lemmas 3.1 and 3.2, it is clear that the fixed points of N are solutions of (1)-(2).
Let y1, y2 ∈ C(J,R), and t ∈ J , then we have

|Ny1(t)−Ny2(t)| ≤
1

Γ(α)

∫ t

0

(t− s)α−1 |gy1 (s)− gy2 (s)| ds

+
|b|

|a+ b|Γ (α)

∫ T

0

(T − s)α−1 |gy1 (s)− gy2 (s)| ds,
(11)

and

|gy1 (t)− gy2 (t)| = |f(t, y1(t),
cDαy1(t))− f(t, y2(t),

cDαy2(t))|
≤ K |y1(t)− y2(t)|+ L |gy1 (t)− gy2 (t)| .

Thus

|gy1 (t)− gy2 (t)| ≤ K

1− L
|y1(t)− y2(t)| . (12)

By replacing (12) in the inequality (11), we obtain

|Ny1(t)−Ny2(t)| ≤
K

(1− L) Γ (α)

∫ t

0

(t− s)α−1 |y1 (s)− y2 (s)| ds

+
|b|K

(1− L) |a+ b|Γ (α)

∫ T

0

(T − s)α−1 |y1 (s)− y2 (s)| ds

≤ KTα

(1− L) Γ (α + 1)
‖y1 − y2‖∞

+
|b|KTα

(1− L) |a+ b|Γ (α + 1)
‖y1 − y2‖∞ .

Then

‖Ny1 −Ny2‖∞ ≤
[

KTα

(1− L) Γ (α + 1)

(
1 +

|b|
|a+ b|

)]
‖y1 − y2‖∞ .

From (10), it follows that N has a unique fixed point which is solution of problem
(1)-(2).

Theorem 3.1. Assume that (H1) and (10) are satisfied, then the problem (1)-(2) is
Ulam-Hyers stable.

Proof. Let ε > 0 and let z ∈ C1(J,R) be a function which satisfies the inequality:

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε for any t ∈ J (13)

and let y ∈ C(J,R) be the unique solution of the following Cauchy problem{
cDαy(t) = f(t, y(t),cDαy(t)); t ∈ J ; 0 < α ≤ 1
y(0) = z(0), y(T ) = z(T ).

Using Lemmas 3.1 and 3.2, we obtain

y(t) = Ãy +
1

Γ (α)

∫ t

0

(t− s)α−1 gy(s)ds.
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On the other hand, if y(T ) = z(T ) and y(0) = z(0), then Ãy = Ãz. Indeed∣∣∣Ãy − Ãz∣∣∣ ≤ |b|
|a+ b|Γ (α)

∫ T

0

(T − s)α−1 |gy(s)− gz(s)| ds

and by the inequality (12), we find∣∣∣Ãy − Ãz∣∣∣ ≤ |b|K
(1− L) |a+ b|Γ (α)

∫ T

0

(T − s)α−1 |y(s)− z(s)| ds

=
|b|K

(1− L) |a+ b|
Iα |y(T )− z(T )| = 0.

Thus
Ãy = Ãz.

Then, we have

y(t) = Ãz +
1

Γ (α)

∫ t

0

(t− s)α−1 gy (s) ds.

By integration of the inequality (13), we obtain∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

∣∣∣∣ ≤ εtα

Γ (α + 1)
≤ εTα

Γ (α + 1)
,

with
gz (t) = f(t, Ãz + Iαgz(t), gz(t)).

We have for any t ∈ J

|z(t)− y(t)| =

∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

+
1

Γ (α)

∫ t

0

(t− s)α−1 (gz (s)− gy (s)) ds

∣∣∣∣
≤

∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

∣∣∣∣
+

1

Γ (α)

∫ t

0

(t− s)α−1 |gz (s)− gy (s)| ds.

Using (12), we obtain

|z(t)− y(t)| ≤ εTα

Γ (α + 1)
+

K

(1− L) Γ (α)

∫ t

0

(t− s)α−1 |z (s)− y (s)| ds,

and by the Gronwall’s lemma, we get

|z(t)− y(t)| ≤ εTα

Γ (α + 1)

[
1 +

γKTα

(1− L) Γ (α + 1)

]
:= cε

where γ = γ (α) a constant, which completes the proof of the theorem. Moreover, if
we set ψ (ε) = cε; ψ(0) = 0, then the problem (1)-(2) is generalized Ulam-Hyers stable.

Theorem 3.2. Assume that (H1), (10) and



30 M. BENCHOHRA AND S. BOURIAH

(H2) there exists an increasing function ϕ ∈ C (J,R+) and there exists λϕ > 0 such that
for any t ∈ J

Iαϕ(t) ≤ λϕϕ(t)

are satisfied, then, the problem (1)-(2) is Ulam-Hyers-Rassias stable.

Proof. Let z ∈ C1(J,R) be solution of the following inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ εϕ(t) , t ∈ J , ε > 0 (14)

and let y ∈ C(J,R) be the unique solution of Cauchy problem:{
cDαy(t) = f(t, y(t),cDαy(t)); t ∈ J ; 0 < α ≤ 1
y(0) = z(0), y(T ) = z(T ).

By Lemmas 3.1 and 3.2, we have

y(t) = Ãz +
1

Γ (α)

∫ t

0

(t− s)α−1 gy (s) ds,

where gy ∈ C(J,R) satisfies the equation:

gy(t) = f(t, Ãz + Iαgy(t), gy(t)),

and

Ãz =
1

a+ b

[
c− b

Γ (α)

∫ T

0

(T − s)α−1 gz (s) ds

]
.

By integration of (14), we obtain∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

∣∣∣∣ ≤ ε

Γ (α)

∫ t

0

(t− s)α−1 ϕ (s) ds

≤ ελϕϕ(t).

On the other hand, we have

|z(t)− y(t)| =

∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

+
1

Γ (α)

∫ t

0

(t− s)α−1 (gz(s)− gy(s)) ds
∣∣∣∣

≤
∣∣∣∣z(t)− Ãz −

1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

∣∣∣∣
+

1

Γ (α)

∫ t

0

(t− s)α−1 |gz(s)− gy(s)| ds.

Using (12), we have

|z(t)− y(t)| ≤ ελϕϕ(t) +
K

(1− L) Γ (α)

∫ t

0

(t− s)α−1 |z(s)− y(s)| ds.

By applying Gronwall’s lemma, we get that for any t ∈ J :

|z(t)− y(t)| ≤ ελϕϕ(t) +
γ1εKλϕ

(1− L) Γ (α)

∫ t

0

(t− s)α−1 ϕ (s) ds
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where γ1 = γ1 (α) is constant, and by (H2), we have:

|z(t)− y(t)| ≤ ελϕϕ(t) +
γ1εKλ

2
ϕϕ (t)

(1− L)
=

(
1 +

γ1Kλϕ
(1− L)

)
ελϕϕ (t) .

Then for any t ∈ J :

|z(t)− y(t)| ≤
[(

1 +
γ1Kλϕ
1− L

)
λϕ

]
εϕ (t) = cεϕ (t)

which completes the proof of Theorem 3.2.

Remark 3.1. Our results for the boundary value problem (1)-(2) are appropriate for
the following problems:

• Initial value problem: a = 1, b = 0, c = 0.
• Terminal value problem: a = 0, b = 1, c arbitrary.
• Anti-periodic problem: a = 1, b = 1, c = 0.

However, they are not for the periodic problem, i.e. for a = 1, b = −1, c = 0.

4. Existence and Ulam-Hyers Stability of the nonlocal boundary value prob-
lem

Lemma 4.1. Let 0 < α ≤ 1 and let h : [0, T ] −→ R a continuous function. Then the
linear problem

cDαy(t) = h(t), t ∈ J
y(0) + g(y) = y0

has a unique solution which is given by:

y(t) = y0 − g(y) +
1

Γ (α)

∫ t

0

(t− s)α−1 h(s)ds.

Lemma 4.2. Let f : J × R × R −→ R be a continuous function, then the problem
(3)-(4) is equivalent to the following problem

y(t) = y0 − g(y) + IαKy(t)

where
Ky(t) = f(t, y(t), Ky(t)).

Theorem 4.1. Assume
(P1) there exist K > 0, 0 < K < 1 and 0 < L < 1 such that:

|f(t, u, v)− f(t, u, v)| ≤ K |u− u|+K |v − v| for anyu, u, v, v ∈ R
and

‖g(y)− g(y)‖ ≤ L‖y − y‖ for anyy, y ∈ C (J,R) .

If

L+
KTα(

1−K
)

Γ (α + 1)
< 1 (15)

then, the boundary value problem (3) -(4) has a unique solution on J.
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Proof. Let the operator

N : C (J,R)→ C (J,R)

Ny(t) = y0 − g(y) +
1

Γ (α)

∫ t

0

(t− s)α−1Ky (s) ds

where

Ky (t) = f (t, y0 − g(y) + IαKy (t) , Ky (t)) .

By Lemmas 4.1 and 4.2, it is easy to see that the fixed points of N are the solutions
of the problem (3) -(4). Let y1, y2 ∈ C (J,R), we have for any t ∈ J

|Ny1 (t)−Ny2 (t)| ≤ |g (y1)− g (y2)|+
1

Γ (α)

∫ t

0

(t− s)α−1 |Ky1 (s)−Ky2 (s)| ds

then

|Ny1 (t)−Ny2 (t)| ≤ L |y1 (t)− y2 (t)|

+
1

Γ (α)

∫ t

0

(t− s)α−1 |Ky1 (s)−Ky2 (s)| ds. (16)

On the other hand, we have for every t ∈ J
|Ky1 (t)−Ky2 (t)| = |f(t, y1(t), Ky1 (t))− f(t, y2(t), Ky2 (t))|

≤ K |y1 (t)− y2 (t)|+K |Ky1 (t)−Ky2 (t)| .
Thus

|Ky1 (t)−Ky2 (t)| ≤ K

1−K
|y1 (t)− y2 (t)| . (17)

By replacing (17) in the inequality (16), we obtain

|Ny1 (t)−Ny2 (t)| ≤ L |y1 (t)− y2 (t)|

+
K(

1−K
)

Γ (α)

∫ t

0

(t− s)α−1 |y1 (s)− y2 (s)|

≤

[
L+

KTα(
1−K

)
Γ (α + 1)

]
‖y1 − y2‖∞ .

Thus

‖Ny1 −Ny2‖∞ ≤

[
L+

KTα(
1−K

)
Γ (α + 1)

]
‖y1 − y2‖∞

from which it follows that N is a contraction which implies that N admits a unique
fixed point which is solution of the problem (3) -(4).

Theorem 4.2. Assume that (P1) and the inequality (15) are satisfied, then the problem
(3)-(4) is Ulam-Hyers stable.

Proof. Let ε > 0 and let z ∈ C1 (J,R) satisfying the inequality:

|cDαz(t)− f (t, z (t) ,cDαz(t))| ≤ ε for every t ∈ J (18)
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and let y ∈ C (J,R) the unique solution of the Cauchy problem:{
cDαy(t) = f (t, y (t) ,cDαy(t)) , t ∈ J, 0 < α ≤ 1
z(0) + g(y) = y0

so

y(t) = y0 − g(y) +
1

Γ (α)

∫ t

0

(t− s)α−1Ky (s) ds,

where

Ky (t) = f (t, y (t) , Ky(t)) .

By integration of the inequality (18), we find∣∣∣∣z(t)− y0 + g(z)− 1

Γ (α)

∫ t

0

(t− s)α−1Kz (s) ds

∣∣∣∣ ≤ εTα

Γ (α + 1)

where Kz (t) = f (t, z (t) , Kz(t)) . For every t ∈ J , we have

|z(t)− y(t)| ≤
∣∣∣∣z(t)− y0 + g(z)− 1

Γ (α)

∫ t

0

(t− s)α−1Kz (s) ds

∣∣∣∣
+

∣∣∣∣g(y)− g(z) +
1

Γ (α)

∫ t

0

(t− s)α−1 (Kz (s)−Ky (s)) ds

∣∣∣∣
≤ εTα

Γ (α + 1)
+ |g(z)− g(y)|+ 1

Γ (α)

∫ t

0

(t− s)α−1 |Kz (s)−Ky (s)| ds.

Using (17), we obtain

|z(t)− y(t)| ≤ εTα

Γ (α + 1)
+L |z(t)− y(t)|+ K(

1−K
)

Γ (α)

∫ t

0

(t− s)α−1 |z(s)− y(s)| ds

thus

|z(t)− y(t)| ≤ εTα

(1− L) Γ (α + 1)
+

K

(1− L)
(
1−K

)
Γ (α)

∫ t

0

(t− s)α−1 |z(s)− y(s)| ds.

Using Gronwall’s Lemma, we obtain for every t ∈ J

|z(t)− y(t)| ≤ εTα

(1− L) Γ (α + 1)

[
1 +

γKTα

(1− L)
(
1−K

)
Γ (α + 1)

]
:= cε

where γ = γ (α) a constant, so the problem (3)-(4) is Ulam-Hyers stable. If we set
ψ (ε) = cε; ψ (0) = 0, then the problem (3)−(4) is generalized Ulam-Hyers stable.

Theorem 4.3. Assume that (P1), inequality (15) and
(P2) there exist an increasing function ϕ ∈ C (J,R+) and λϕ > 0 such that

Iαϕ (t) ≤ λϕϕ (t) for each t ∈ J

are satisfied, then the problem (3)-(4) is Ulam-Hyers-Rassias stable.
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5. Examples

Example 1. Consider the following boundary value problem

cD
1
2y(t) =

1

10et+2(1 + |y(t)|+ |cD 1
2y(t)|)

, for each t ∈ [0, 1] (19)

y(0) + y(1) = 0. (20)

Set

f(t, u, v) =
1

10et+2(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1]

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

10e2
(|u− ū|+ |v − v̄|).

Hence condition (H1) is satisfied with K = L = 1
10e2

.
Thus condition

KTα

(1− L)Γ(α + 1)

(
1 +

|b|
|a+ b|

)
=

3

2(10e2 − 1)Γ(3
2
)

=
3

(10e2 − 1)
√
π
< 1,

is satisfied with a = b = T = 1, c = 0, and α = 1
2
. It follows from Lemma 3.3 that the

problem (19)-(20) has a unique solution on J . Moreover, Theorem 3.1 implies that the
problem (19)-(20) is Ulam-Hyers stable.

Example 2. Consider the boundary value problem:

cD
1
2y(t) =

e−t

(9 + et)

 |y(t)|
1 + |y(t)|

−

∣∣∣cD 1
2y(t)

∣∣∣
1 +

∣∣∣cD 1
2y(t)

∣∣∣
 , t ∈ J = [0, 1] (21)

y(0) +
n∑
i=1

ciy(ti) = 1, (22)

where 0 < t1 < t2 < . . . < tn < 1 and ci = 1, . . . , n are positive constants with
n∑
i=1

ci ≤
1

3
.

Set

f(t, u, v) =
e−t

(9 + et)

[
u

1 + u
− v

1 + v

]
, t ∈ [0, 1], u, v ∈ [0,+∞).

Clearly, the function f is continuous. For each u, ū, v, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤ e−t

(9 + et)
(|u− ū|+ |v − v̄|)

≤ 1

10
|u− ū|+ 1

10
|v − v̄| .
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On the other hand, we have

|g(u)− g(ū)| =

∣∣∣∣∣
n∑
i=1

ciu−
n∑
i=1

ciū

∣∣∣∣∣
≤

n∑
i=1

ci |u− ū|

≤ 1

3
|u− ū| .

Hence condition (P1) is satisfied with K = K =
1

10
and L =

1

3
. We have

L+
KTα(

1−K
)

Γ (α + 1)
=

1

3
+

1

9Γ

(
3

2

) =
9
√
π + 6

27
√
π

< 1.

It follows from Lemma 4.1 that the problem (21)- (22) has a unique solution on J and
by Theorem 4.2, the problem (21)-(22) is Ulam-Hyers stable.

Remark 5.1. The main results of Example 2 stay available when

g(t) =
1

4

(
|y(t)|

1 + |y(t)|

)
and

L+
KTα(

1−K
)

Γ (α + 1)
=

1

4
+

1

9Γ

(
3

2

) =
9
√
π + 8

36
√
π

< 1.
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