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1. Introduction

We recall here some concepts of convexity that are well known in the
literature.
Let I be an interval in R.

Definition 1.1 ([38]). We say that f : I — R is a Godunova-Levin
function or that f belongs to the class Q (I) if f is non-negative and for
allz,y € I and t € (0,1) we have

1 1
S ). (1)

flr+(1—-t)y) < -
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Some further properties of this class of functions can be found in [28],
29], [31], [44], [47] and [48]. Among others, it has been noted that non-
negative monotone and non-negative convex functions belong to this class
of functions.

The above concept can be extended for functions f: C' C X — [0, 00)
where C' is a convex subset of the real or complex linear space X and
inequality (1) is satisfied for any vectors z,y € C and ¢t € (0,1). If
the function f : C C X — R is non-negative and convex, then is of
Godunova-Levin type.

Definition 1.2 ([31]). We say that a function f : I — R belongs to the
class P (I) if it is nonnegative and for all z,y € I and t € [0, 1] we have

flr+ (1 —=t)y) < fx)+f(y). (2)

Obviously @ (I) contains P (I) and for applications it is important to
note that also P (I) contain all nonnegative monotone, convex and quasi
conver functions, i. e. nonnegative functions satisfying

fltz+ (1 —t)y) <max{f(z),f(y)} (3)
for all z,y € I and ¢t € [0, 1].
For some results on P-functions see [31] and [45] while for quasi convex
functions, the reader can consult [30].
If f:C C X — [0,00), where C' is a convex subset of the real or
complex linear space X, then we say that it is of P-type (or quasi-convex)
if the inequality (2) (or (3)) holds true for z,y € C and ¢ € [0, 1] .

Definition 1.3 ([7]). Let s be a real number, s € (0,1]. A function f :
[0,00) — [0,00) is said to be s-convex (in the second sense) or Breckner
s-convex if

flz+ (A =t)y) <t°f(x)+ (1 —-1)"f(y)

for all x,y € [0,00) and t € [0,1].

For some properties of this class of functions see [1], [2], [7], [8], [26],
27], [39], [41] and [50].

The concept of Breckner s-convexity can be similarly extended for
functions defined on convex subsets of linear spaces.

It is well known that if (X, ||-]|) is a normed linear space, then the
function f () = ||z||”,p > 1 is convex on X.

Utilising the elementary inequality (a 4+ b)° < a® + b° that holds for
any a,b > 0 and s € (0,1], we have for the function g (z) = ||z||® that

gltr+(1—1t)y) = |te+ A =t)yl> < (¢l + (1 — 1) [[yl)’
< (=) + [ =) Iyl
= t'g(z)+(1-1)"g ()



INEQUALITIES OF HERMITE-HADAMARD TYPE 3

for any z,y € X and t € [0, 1], which shows that ¢ is Breckner s-convex
on X.
In order to unify the above concepts for functions of real variable, S.
Varosanec introduced the concept of h-convex functions as follows.
Assume that [ and J are intervals in R, (0,1) C J and functions h and
f are real non-negative functions defined in J and I, respectively.

Definition 1.4 ([53]). Let h: J — [0,00) with h not identical to 0. We
say that f : I — [0,00) is an h-convez function if for all x,y € I we have

fle+ A =t)y) <h(t)f(z)+h(1-1)f(y) (4)
forallt € (0,1).

For some results concerning this class of functions see [53], [6], [42],
[51], [49] and [52].

This concept can be extended for functions defined on convex subsets
of linear spaces in the same way as above by replacing the interval I with
the corresponding convex subset C' of the linear space X.

We can introduce now another class of functions.

Definition 1.5. We say that the function f : C C X — [0,00) is of
s-Godunova-Levin type, with s € [0,1], if

e+ (1=09) < 5 () + gsef (). )
for allt € (0,1) and z,y € C.

We observe that for s = 0 we obtain the class of P-functions while for
s = 1 we obtain the class of Godunova-Levin. If we denote by Qs (C)
the class of s-Godunova-Levin functions defined on C| then we obviously
have

for 0 < s; <s9<1.

For different inequalities related to these classes of functions, see [1]-[4],
6], [9]-[37], [40]-[42] and [45]-[52].

A function h : J — R is said to be supermultiplicative if

h(ts) > h(t)h(s) for any t,s € J. (6)

If inequality (6) is reversed, then h is said to be submultiplicative. If the
equality holds in (6) then A is said to be a multiplicative function on J.

In [53] it has been noted that if A : [0,00) — [0,00) with h(t) =
(x + c)p_1 , then for ¢ = 0 the function h is multiplicative. If ¢ > 1, then
for p € (0,1) the function h is supermultiplicative and for p > 1 the
function is submultiplicative.
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We observe that, if A~ and g are nonnegative and supermultiplicative,
so is their product. In particular, if A is supermultiplicative then its
product with a power function ¢, (t) = ¢" is also supermultiplicative.

We can prove now the following generalization of the Hermite-Hadamard
inequality for h-convex functions defined on convex subsets of linear
spaces.

Theorem 1.1. Assume that the function f : C C X — [0,00) is an
h-convex function with h € L[0,1]. Let y,x € C with y # = and assume
that the mapping [0,1] > t — f[(1 —t)x + ty] is Lebesque integrable on
[0,1]. Then

1
2h (

5/ (552) < [0 -neenia<ir@ o) [ noa
(7)
Proof. By the h-convexity of f we have
flte+ (1 =t)y) <h(t)f(x)+h(l=1)f(y) (8)
for any ¢ € [0,1].
Integrating (8) on [0, 1] over ¢, we get

/Olf(tx+(1—t)y)dt§f(x)/olh(t)dt+f(y)/01h(1—t)dt

and since fol h(t)dt = fol h (1 —t)dt, we get the second part of (7).
From the h-convexity of f we have

P <n(3) v )

for any z,w € C.
If we take in (9) z =tx+ (1 —t)y and w = (1 — t) x + ty, then we get

F(55Y) = (3) e a-on s @-nan) (o

for any t € [0,1].
Integrating (10) on [0, 1] over ¢ and taking into account that

1 1
/f(tx—i—(l—t)y)dt:/f((l—t)x+ty)dt
0 0
we get the first inequality in (7). O

Remark 1.1. If f : [ — [0,00) is an h-convex function on an interval
I of real numbers with h € L[0,1] and f € L][a,b] with a,b € I,a < b,
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then from (7) we get the Hermite-Hadamard type inequality obtained by
Sarikaya et al. in [49]

2h1() (Hb) /f Jdu < | ()+f(b)]/01h(t)dt.

If we write (7) for h (t) = t, then we get the classical Hermite-Hadamard
inequality for convex functions.

If we write (7) for the case of P-type functions f : C' — [0,00), i.e.,
h(t) =1,t €[0,1], then we get the inequality

%f(x+{> /‘fl_tx+mmﬁ<f<>+f<> (11)

that has been obtained for functions of a real variable in [31].
If f is Breckner s-convex on C, for s € (0,1), then by taking h () =
in (7) we get

25—1f(x+y) /f (0 —t)attyldt < LW o

s+1
that was obtained for functions of a real variable in [26].
Since the function g (x) = ||z||” is Breckner s-convex on on the normed

linear space X, s € (0, 1), then for any x,y € X we have

1" + [l]”

Slerol < [0 -a i < (13

If f:C —[0,00) is of s-Godunova-Levin type, with s € [0, 1), then
1 T4y f(z)+ f(y)
< V"
5ot ( ) / fll=t)x+tyldt < s (14)

We notice that for s = 1 the first inequality in (14) still holds, i.e.

if(x—i—y) /f (1 —t)x +ty|dt. (15)

The case for functions of real variables was obtained for the first time in
[31].

2. M-Convex Functions

We start with the following definition:

Definition 2.1. Let A : [0,00) — [0,00) be a function with the property
that A(t) > 0 for all t > 0. A mapping f : C — R defined on convex
subset C' of a linear space X is called \-convex on C' if

az + By _ Ale) f(z) +A(8) f(y)
f( a+ )S Ala+p) 1o
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forall a, 8 >0 with a4+ >0 and x,y € C.

We observe that if f: C' — R is A\-convex on C| then f is h-convex on
C with h(t) = 3, t € [0,1].

If f:C — [0,00) is h-convex function with h supermultiplicative on
[0,00), then f is A-convex with A = h.

Indeed, if a, 8 > 0 with a + 3 > 0 and x,y € C then

(2] < a( ) ries( )
ha)f (x) +h(8) f ()
- h(a+p)

The following proposition contain some properties of A\-convex func-
tions.

Proposition 2.1. Let f: C' — R be a A-convex function on C.
(1) If X (0) > 0, then we have f (z) > 0 for all x € C,
(11) If there exists xo € C so that f (xo) > 0, then

AMa+B) < A(a) +A(B)

for all a, B > 0, i.e. the mapping X is subadditive on (0, 00) .
(111) If there exists xo,yo € C with f (xo) > 0 and f (yo) < 0, then

AMa+ ) =A(a)+A(P)
for all a, > 0, i.e. the mapping A is additive on (0,00).
Proof. (i) For every 8 > 0 and x,y € C we can state

0z + By AO) f(x)+X(B) f(y)
f( 054 >§ X (B)

from where we get

A (0)
fy) < mf@) +f (W)
and since A (0) > 0 we get that f(x) >0 for all z € C.

(ii) For all ar, B > 0 we have

azg + P\ _ A@) f(z0) + A(B) [ (x0)
f( a+ B )S Ao+ )

from where we get

Aa) + A (B)
[ (o) < )\(a—mf(l"@

and since f (zg) > 0, then we get that A (o + ) < A (a) + A (5) for all
a, B> 0.



INEQUALITIES OF HERMITE-HADAMARD TYPE 7
(iii) If we write the inequality for yo we also have

Flyo) < MO FAB) 5

Aa+5)
and since f (yo) < 0 we get that
Aa+B) = Aa) + A (B)
for all o, 8 > 0. U

We have the following result providing many examples of subadditive
functions A : [0, 00) — [0, 00) .

Theorem 2.1. Let h(z) = > 7 a,2" a power series with nonnegative
coefficients a,, > 0 for alln € N and convergent on the open disk D (0, R)
with R > 0 or R = oco. Ifr € (0, R) then the function A, : [0,00) — [0, 00)
given by
_ h(r)
v = ) ()
is nonnegative, increasing and subadditive on [0, 00) .

Proof. We use the Cebysev inequality for synchronous (the same mono-

tonicity) sequences (¢;),cy » (bi);cn and nonnegative weights (p; ), , namely

STp Y picbi = pici Y pibi, (18)
i=0 =0 i=0 i=0

for any n € N.

Let t,s € (0,1) and define the sequences ¢; := t', b; := s'. These
sequences are decreasing and if we apply Cebysev’s inequality for these
sequences and the weights p; := a;r" > 0 we get

Z a;r' Z a; (rts)" > ' a; (rt)’ Z a; (rs)’ (19)

n
7=

0

for any n € N.
Since the series

Z a;r', Z a; (rts)", Z a; (rt)" and Z a; (rs)’
i=0 i=0 i=0 i=0
are convergent, then by letting n — oo in (19) we get
h(r)h(rts) > h(rt)h(rs)
which can be written as
hr) _ h(r) b
h(rts) = h(rt) h(rs)

for any t,s € (0,1).
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Let o, § > 0 with a + 8 > 0. Then

B h(r) N h(r)
Ar(a+B) = h(rexp(—a—ﬁ))} = {h(TeXP( ) exp ( 5))(}20)
1 h(r) h(r) ]
h(rexp(—a)) h(rexp(—p))
SN 1O I I SR 1O I
=1 | h(rexp (—a))] 1 {h(rexp(—ﬁ))}

- )\r (O‘)—i_)‘r (6)

Since h(r) > h(rexp(—t)) for any ¢ € [0,00) we deduce that A, is
nonnegative and subadditive on [0, 00) .

Now, observe that A, is differentiable on (0, 00) and
A )+ =—(n[h(rexp(=t))]) (21)
_ W (rexp(=t)) (rexp (1))’
h(rexp (—t))
~rexp(—t) B (rexp(—t))
T hrenn)

for t € (0,00), where

o0
= E na,z""1.
n=1

This proves the monotonicity of A,. U

We have the following fundamental examples of power series with pos-
itive coefficients

[ee]

o0 z€ D(0,1) (22)
n=0
=1
= Z —z2" =exp(z z € C,
n!
n=0
- 1 2n
h(z)= Z (2n)!z = coshz, z € C;
n=0
0 1 . .
h(Z) = Zomz2 +1 = SthZ, z € (C,

=1 1
hiz)=) —z"=1 D(0.1).
()= "=l 2 €D(0,1)
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Other important examples of functions as power series representations
with positive coefficients are:

1 1 1

1—
n=1 ©

"= go \/;((27;151)) ST =sinT (z), 2 € D(0,1);

- 1
h(z) =3 g st (z), 2 € DO
=1

o)

n+a)l (n r
h(z) =2 Fi (a, 8,7, 2 ); n('lj(— )}(é);(i)+§?)zn,a,ﬁ,”y>07

z€ D(0,1);
where I' is Gamma function.

Remark 2.1. Now, if we take h(z) = 1—;, z2€ D(0,1), then

1— _
A () = In {M} (24)
11—
is nonnegative, increasing and subadditive on [0, 00) for any r € (0,1).
If we take h(z) = exp (z), z € C, then
A (t) = [1 —exp (—1)] (25)

is nonnegative, increasing and subadditive on [0,00) for any r > 0.

Corollary 2.1. Let h(z) = Y " a,z" a power series with nonnegative
coefficients a,, > 0 for alln € N and convergent on the open disk D (0, R)
with R >0 or R =00 andr € (0, R). For a mapping f: C — R defined
on convex subset C' of a linear space X, the following statements are
equivalent:

(i) The function f is \.-convex with A, : [0,00) — [0, 00),
h(r)
A () i=In |—
0= et
(ii) We have the inequality

ax+ﬁy)

e mﬂw 2

h(rexp(—a —

: {%} h {%} h

for any o, >0 with a4+ 3 >0 and z,y € C.
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111) We have the inequalit
Y

[ (r-exp (=a)))" [h (rexp (=B

[l (rexp (—a — B)))/ 555

aerBy)

<[h (T)]f(m)—&-f(y)—f( s

for any a, >0 with o+ 5 > 0 and x,y € C.
Proof. We have

az + By
F(EEEE) o a8) <0 (@) () +0:9)1 )

for any «, 8 > 0 with a + 5 > 0 and x,y € C, is equivalent to

ow:+5y)

[h(r exs (@a - 5))}]” (=45 (28)

mhﬁﬁgiwrm+m{va¢n]w

o[t et |

for any o, f > 0 with a + 3 > 0 and x,y € C.
The inequality (28) is equivalent to (26) and the proof of the equiva-
lence ” (i) < (i1)” is concluded. The last part is obvious. O

=

IN

Remark 2.2. We observe that, in the case when
A (t) = r[1—exp (—1)], £>0,

then the function f is \.-convexr on convex subset C' of a linear space X

iff

f (ax + ﬁy) cHoepCo)]f(@)+[1—exp(=f)f W) (29)

a+f 1 —exp(—a—p)
for any a, >0 with o+ 5 > 0 and x,y € C.

We observe that this definition is independent of r > 0.
The inequality (29) is equivalent to

ax + By exp () [exp (o) — 1] f () + exp (o) [exp (8) — 1] f (y)
f<a+6)§ exp (ot ) — 1

(30)
for any a, 8 >0 with o+ >0 and x,y € C.
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3. Hermite-Hadamard Type Inequalities

For an arbitrary mapping f : C' C X — R where C' is a convex subset
of the linear space X, we can define the mapping

Gy [0,1] > R, guy (1) :=f(tz+(1—1)y),
where z,y are two distinct fixed elements in C.

Proposition 3.1. With the above assumptions, the following statements
are equivalent:

(i) [ is A-convex on C

(11) For every x,y € C, the mapping g, is A-convez on [0,1].
Proof. 7 (i) = (ii)". Let t1,t5 € [0,1] and o, f > 0 with a4+ § > 0. Then
we have

Oétl + /BtQ
s (057 (31)

aty + Pty aty + Bty
fK a+t B )“(1_ at B )4

y [a(t1x+ (1—t1)y)+ B (tax + (1 — tg)y)]
a+p
M) bzt (1= ) 9) + A () S (taz + (1 - t2))
- AMa+B)
M) gay (t1) + A (B) gy (t2)

A+ p)

and the implication is proved.
(i) = (i)”. Let z,y € C and o, 8 > 0 with a+ 3 > 0. Then we have

ax + Py o a-1+5-0
f(a+ﬂ>‘””(aiﬁ>‘%@( o+ p )
< M) gey (1) + A (5) gay (0)
- A+ p)
@ @A) W)
AMa+5)

and the implication is thus proved. U

We can introduce the following mapping k,, : [0,1] — R

e () = 5 [F (b + (1= 0)) + £ (1= D)2 + 1y)]

for x,y € C, x # y.
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Theorem 3.1. Let f : C'— [0,00) be a A-convex function on C. Assume
that x,y € C' with x # y.
(i) We have the equality
kpy (1 —1t) = kg, () forallt €10,1];
(11) The mapping k,,, is A\-convezr on [0, 1];
(i1i) One has the inequalities

A +AA =) f@)+ )

and
o (M) < k) (33

for allt € [0,1] and o > 0.

(iv) Let y,x € C withy # x and assume that the mappings [0,1] > t —
FI(1—t)z+ty] and X\ are Lebesgue integrable on [0, 1], then we have the
Hermite-Hadamard type inequalities

A (2a) T +y ! fF(@) + f(y) 1
2/\(a)f< 5 >§/0 f((l—t)x+ty)dt<T/0 )\(t)(;l;

for any o > 0.

Proof. The statements (i) and (ii) are obvious.
(iii). By the A-convexity of f we have:

A f)+ A0 =) f(y)

flr+(1—-t)y) < N0

and

AL =1) fe)+A @) f(y)

F((L=t)z+1y) <

A1) ’
which gives by addition inequality (32).
We also have
Aa) f(2) +A(a) flu) f (a2+au> _ (z—l—u)
A (2a) - a+ 2

ie.,

X (20) F(2)+ f)]>f <Z—|2-u>

for all z,u € C.
If we write this inequality for z =tz + (1 —t)y and u = (1 —t) x + ty
we get

Fltot (=0m+ £ - Do) 2 (15,
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which is equivalent to (33).
Integrating (33) and (34) over ¢ on [0, 1] we get

2 () < h [ nnp s -0 s

A (200) 2 ) =2
(35)
fl@)+f@y) [fAB+A0-1)
< 5 /0 (1) dt.
Since ) )
/0 f(tx—l—(l—t)y)dt:/o f((1—=t)z+ty)dt
and . .
/ )\(t)dt:/ A1 —t)dt
then by (35) we get the desired result (34). d

Remark 3.1. Since \ is subadditive, then
A (2ar)
2\ (o)
From (34) we have the best inequality

sup{iﬁj%}f(x;y)S/Olf((l—t):c+ty)dt (36)

f)+ [ [
ST/O M (#) dt.

<1 for any a > 0.

If the right limit

k= tim A
s—0+ S
exists and is finite with k > 0, then
A2a . A2a
A20) (—(za )> limgo. ( o )> k

a0t 2X (a) | am0t (M) T — (M) k

and by (34) we get
Tty ! f)+fy) [
f( : )g/o P =)+ ) de < HE) /OA(t)dt. (37)

Corollary 3.1. Assume that the function f : C — [0,00) is A.-convex
with A\, : [0,00) — [0,00),

A (1) ::m{h h(r) }

(rexp (—t))
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and h s as in Corollary 2.1.

If y,x € C with y # x and the mapping [0,1] > t — f[(1 —t)x + ty]
is Lebesgue integrable on [0, 1], then we have the Hermite-Hadamard type
inequalities

f("”";y)s/olf<<1—t>x+ty>dt (38)

f@)+fy) [! h(r)
Sm/ﬁ“{m}‘“

Proof. We know that A, is differentiable on (0, 00) and
(1) rexp (—t) ' (rexp (—t))

h (rexp(—t))
for t € (0, 00) , where

h(z) = Z na,z""".
n=1

Since A, (0) = 0, then

o A gy TR
/f—sl_l)r&r . =\, (0) = h ) > 0 for r € (0, R)
and by (37) we get (38). O

Furthermore, we observe that the following elementary inequality holds:
(@ +8)" =2 (<)o" + 57 (39)

forany a, § >0and p>1(0<p<1).

Indeed, if we consider the function f, : [0,00) — R, f, (t) = (¢t + 1)’ —t*
we have f/(t) = p [(t + Pt — P='] . Observe that for p > 1 and ¢ > 0
we have that f)(t) > 0 showing that f, is strictly increasing on the
interval [0,00). Now for t = § (8> 0,a > 0) we have f,(t) > f,(0)
giving that (% + 1>p — <%)p > 1, i.e., the desired inequality (39).

For p € (0, 1) we have f, strictly decreasing on [0, c0) which proves the
second case in (39).

If we consider the power function A, (¢) = t? with ¢ € (0,1), then A,
is subadditive and by (34) we have

L (z+y ' f @)+ [ )
21_qf( . )g/of((l—t)x+ty)dt§T, (40)

therefore we recapture the inequality (12) that was obtained from (7).
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For ¢ > 1 and if we consider the function 5\q (t) = tq, then for any
t,s > 0 we have
X 1 1 11 .
Ag (t = < <—4+—=X()+ A

which shows that 5\(] is subadditive.
If f:C —[0,00) is a Aj-convex function on C, i.e.

ax + By alf (x) +B7f (y)
f(aw)g (a+p)" (41)

for all a, > 0 with a+ 8 > 0 and x,y € C, where ¢ > 1, then we
observe that the inequality (41) is equivalent to

P < () By @rar el @

for all @, 8 > 0 with o+ 8> 0 and z,y € C, where ¢ > 1.
Since A, is not integrable on [0, 1] we cannot apply the second inequal-
ity from (34). However, from the first inequality we get

2q1+1f<x+y> /f (1—t)a +ty)dt (43)

provided that f is \,-convex and the integral fo f (1 —t)z + ty) dt exists
for some z,y € C.

Moreover, if we assume that f: C' — [0,00) is a A-convex function on
Cwith A(t) =1—exp(—t),t >0, ie.

ax + Py exp () [exp (o) — 1] f () + exp () [exp (8) — 1] f (y)
f<oz+ﬂ)§ exp(atf)— 1

(44)
for any o, 5 > 0 with o + 8 > 0 and =,y € C, then by (37) we have

f(“y) /f (1—t x+ty)dt<M/Ol[l—exp(—t)]dt,

1—et

that is equivalent to

f(“y) /f (- +myar< TOEIW

provided the integral fo f (1 —t)z+ ty) dt exists for some x,y € C.

4. Inequalities for Double Integrals

We have the following result:
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Theorem 4.1. Let [ : C — [0,00) be a A-convex function on C. Let

y,x € C withy # = and assume that the mappings [0,1] > t — f[(1 —t) z + ty]
and X are Lebesque integrable on [0,1], then for 0 < a < b we have the
Hermite-Hadamard type inequalities

o (S5 6o (40

s [ (gt e (P et
<[f @)+ () / / Ma—iﬁ)dadﬂ

for any n > 0.

| /\

Proof. By the A\-convexity of f we have

ax + By Aa) f(x)+A(B) f(y)
f(a+ﬁ >§ Mo+ B)

and

Br+ay\ _ ANB)[(2)+ () f(y)
f(a+ﬁ)§ Ao+ )

for all o, 8 > 0 with o + 3 > 0.
By adding these inequalities we obtain

() () 22

for all o, 8 > 0 with o+ 3 > 0.
Since the mappings [0,1] 5 ¢ — f[(1 —t)x + ty] and X are Lebesgue
integrable on [0, 1], then the integrals

[ (528 [ [ (55

exist and by integrating the inequality (47) on the square [a, b]* we get

Loy |2
2)+ 1 () / / Wdad@
o)+ f () // %dad@

and the second inequality in (46) is proved.

[f (@) + F )] (47)
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We know from the proof of Theorem 3.1 that
A(n) B " <z + u)
S )+ F )= 1

for all z,u € C' and n > 0.
Taking

ax + By pr + ay
z2=———"and u = ——-

a+p a+

v () o () 2 ()

for all a, 3 > 0 with a4+ 8 > 0 and n > 0.
Integrating inequality (48) on the square [a, b]* we get the first part of
(46). O

we get

Remark 4.1. If we write inequality (46) for f: C — [0,00) a Xq-confuex
function on C, then we get the inequality

it (57) 0= (19)

A ) (52
<@+ 1) [ [ (222) doas

provided that the mapping [0,1] > t — f[(1 —t)x + ty] is Lebesgue inte-
grable on [0, 1].
For q =1 we have

/ab/abazﬁdﬁda:/ab/ab(1+§>dﬁda

=(b—a)’+ (Inb—1Ina)

Inb—1
—(b—a) <1+ nb na.a+b)

b? — a?

b—a 2
Ala,b)
= 1
0= |1+ T
where
b—a
Lla.b) =1

15 the logarithmic mean.
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Then from (49) we get
_f (”’*f‘/) (50)

1 borb ax + By Br + ay
<goap [ (et s s (S5 e

<[f (@) + f (v)] [H L(a,b)

provided that f : C — [0,00) is a \i-convex function on C and the
mapping [0,1] 2 ¢t — f[(1 —t)x + ty| is Lebesgue integrable on [0,1].
For g = 2 we have

L [ (2o
:/ab/ab(1+%+ﬁ2>dﬂda

Inb—Ilna a+b a®>+ab+b?
=(b—a)(1+2 :
(b-a) ( N b—a 2 * 3ab )
B 2lnb—lna a+b+a2+4ab+62
N b—a 2 3ab

B 1 2 A(a,b) Af(a,b)
=2(b-a) {§+§'G(a,b)+L(a,b)}’

where G (a,b) := \/ab is the geometric mean.
Then from (49) we get

i (“y) (51)

ar + Py Br + ay
somar | [ (555 o1 (Bt o

1 2 A(a b) A<a’b)
2[f (@) + f ()] [3 3 Gla, b)*L(a,b)]

provided that f : C — [0,00) is a No-convez function on C and the
mapping [0,1] >t — f[(1 —1t)x + ty| is Lebesgue integrable on [0, 1].

Open Access: This article is distributed under the terms of the Cre-
ative Commons Attribution License (CC-BY 4.0) which permits any use,
distribution, and reproduction in any medium, provided the original au-
thor(s) and the source are credited.
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