Open access

Abstract

The effect of coke and bituminous coal on the reduction of medium-grade manganese ore in ferromanganese production was investigated. Charges of 30 kg medium grade manganese ore, 12 kg limestone and varied amounts of coke and coal were smelted in a Submerged Electric Arc Furnace (SAF) at temperatures of 1300°C to 1500°C. The composition of the ferromanganese and the slag were determined by X-Ray Fluorescence. It was found that using coke as a single reductant resulted in a 96% yield of ferromanganese which was higher than by using coal either as a single reductant or in a mixture of coal and coke. It was also found that using coke as a single reductant resulted in the lowest specific energy consumption. Using coal as reductant produced ferromanganese containing high sulfur and phosphorus.

Abstract

The effect of coke and bituminous coal on the reduction of medium-grade manganese ore in ferromanganese production was investigated. Charges of 30 kg medium grade manganese ore, 12 kg limestone and varied amounts of coke and coal were smelted in a Submerged Electric Arc Furnace (SAF) at temperatures of 1300°C to 1500°C. The composition of the ferromanganese and the slag were determined by X-Ray Fluorescence. It was found that using coke as a single reductant resulted in a 96% yield of ferromanganese which was higher than by using coal either as a single reductant or in a mixture of coal and coke. It was also found that using coke as a single reductant resulted in the lowest specific energy consumption. Using coal as reductant produced ferromanganese containing high sulfur and phosphorus.

5. References

  • Ahmed, A., Haifa, H., El-Fawakhry, M. K., El-Faramawy, H & Eissa M. (2014). Parameters affecting energy consumption for producing high carbon ferromanganese in a closed submerged arc furnace. Journal of Iron and Steel Research, International, 21(7), 1-20. DOI:10.1016/S1006-706X(14)60103-5

  • Çardakli, I. S., SevInç, N., & Öztürk, T. (2011). Production of high carbon ferromanganese from a manganese ore located in Erzincan. Turkish Journal of Engineering and Environmental Sciences, 35(1), 31-38. DOI:10.3906/muh-1009-6.

  • Chaudhary, P. N., Minj, R. K., & Goel, R. P. (2007). Development of a process for dephosphorisation of high carbon ferromanganese. Proceedings-International Ferro-Alloys Congress (INFACON) XI, 18-21 February 2007 (pp. 288-296). New Delhi - India. The Indian Ferro Alloy Producers’ Association (IFAPA).

  • Chukwuleke, O. P., Cai, J., Chukwujekwu, S., & Xiao, S. (2009). Shift from coke to coal using direct reduction method and challenges. Journal of Iron and Steel Research, International, 16(2), 1-5. DOI: 10.1016/S1006-706X(09)60018-2.

  • Eissa, M., El-faramawy, H., Ahmed, A., & Nabil, S. (2012). Parameters affecting the production of high carbon ferromanganese in closed submerged arc furnace. Journal of Minerals & Materials Characterization & Engineering, 11(1), 1-20. DOI:10.4236/jmmce.2012.111001.

  • Hurd, D., & Kollar, J. (1991). Direct current electric arc furnaces. Pittsburgh, Pennsylvania: The EPRI Center for Materials Production (CMP-063).

  • Hwang, S. H. (2011). Phosphorus Removal From Manganese Ore by Plasma Treatment. Thesis, 2011, The University of Utah, United State of America.

  • Kunze, J., & Degel, R. (2004). New trends in submerged arc furnace technology. Proceedings - International Ferro-Alloys Congress (INFACON) X. 1–4 February 2004 (pp. 444-454). Capetown-South Africa. Document Transformation Technologies (Doctech).

  • Lagendijk, H., Xakalashe, B., Ligege, T., Ntikang, P., & Bisaka, K. (2010). Comparing manganese ferroalloy smelting in pilot-scale AC and DC submerged-arc furnaces. Proceedings - International Ferro-Alloys Congress (INFACON) XII, 6–9 June 2010 (pp. 498-508). Helshinki - Finland. Outotec Oyj.

  • Shim, S. C., & Sano, N. (1995). Thermodynamics of phosphorus in carbon-saturated manganese-based alloys. Proceedings - International Ferro-Alloys Congress (INFACON) VII, 11–14 June 1995 (611–620). Trondheim- Norway. The Norwegian Ferroalloy Research Organization (FFF).

  • Steenkamp, J. D., & Basson, J. (2013). The manganese ferroalloys industry in southern Africa. The Journal of The Southern Africa Institute of Mining and Metallurgy, 113(8), 667-676. Available from: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532013000800014&lng=en&nrm=iso>. ISSN 2411-9717.

  • Tangstad, M., & Olsen, S. E. (1995). The ferromanganese process-material and energy balance. Proceedings - International Ferro-Alloys Congress (INFACON) VII, 1–14 June 1995 (pp. 621-630). Trondheim-Norway. The Norwegian Ferroalloy Research Organization (FFF).

  • Vorob’ev, V. P., Godunov, A. D., & Ignat’ev, A. V. (2009). Production of manganese alloys from rich highbasicity ore. Steel in Translation, 39(3), 243-247. DOI: 10.3103/S0967091209030152.

Ahmed, A., Haifa, H., El-Fawakhry, M. K., El-Faramawy, H & Eissa M. (2014). Parameters affecting energy consumption for producing high carbon ferromanganese in a closed submerged arc furnace. Journal of Iron and Steel Research, International, 21(7), 1-20. DOI:10.1016/S1006-706X(14)60103-5

Çardakli, I. S., SevInç, N., & Öztürk, T. (2011). Production of high carbon ferromanganese from a manganese ore located in Erzincan. Turkish Journal of Engineering and Environmental Sciences, 35(1), 31-38. DOI:10.3906/muh-1009-6.

Chaudhary, P. N., Minj, R. K., & Goel, R. P. (2007). Development of a process for dephosphorisation of high carbon ferromanganese. Proceedings-International Ferro-Alloys Congress (INFACON) XI, 18-21 February 2007 (pp. 288-296). New Delhi - India. The Indian Ferro Alloy Producers’ Association (IFAPA).

Chukwuleke, O. P., Cai, J., Chukwujekwu, S., & Xiao, S. (2009). Shift from coke to coal using direct reduction method and challenges. Journal of Iron and Steel Research, International, 16(2), 1-5. DOI: 10.1016/S1006-706X(09)60018-2.

Eissa, M., El-faramawy, H., Ahmed, A., & Nabil, S. (2012). Parameters affecting the production of high carbon ferromanganese in closed submerged arc furnace. Journal of Minerals & Materials Characterization & Engineering, 11(1), 1-20. DOI:10.4236/jmmce.2012.111001.

Hurd, D., & Kollar, J. (1991). Direct current electric arc furnaces. Pittsburgh, Pennsylvania: The EPRI Center for Materials Production (CMP-063).

Hwang, S. H. (2011). Phosphorus Removal From Manganese Ore by Plasma Treatment. Thesis, 2011, The University of Utah, United State of America.

Kunze, J., & Degel, R. (2004). New trends in submerged arc furnace technology. Proceedings - International Ferro-Alloys Congress (INFACON) X. 1–4 February 2004 (pp. 444-454). Capetown-South Africa. Document Transformation Technologies (Doctech).

Lagendijk, H., Xakalashe, B., Ligege, T., Ntikang, P., & Bisaka, K. (2010). Comparing manganese ferroalloy smelting in pilot-scale AC and DC submerged-arc furnaces. Proceedings - International Ferro-Alloys Congress (INFACON) XII, 6–9 June 2010 (pp. 498-508). Helshinki - Finland. Outotec Oyj.

Shim, S. C., & Sano, N. (1995). Thermodynamics of phosphorus in carbon-saturated manganese-based alloys. Proceedings - International Ferro-Alloys Congress (INFACON) VII, 11–14 June 1995 (611–620). Trondheim- Norway. The Norwegian Ferroalloy Research Organization (FFF).

Steenkamp, J. D., & Basson, J. (2013). The manganese ferroalloys industry in southern Africa. The Journal of The Southern Africa Institute of Mining and Metallurgy, 113(8), 667-676. Available from: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532013000800014&lng=en&nrm=iso>. ISSN 2411-9717.

Tangstad, M., & Olsen, S. E. (1995). The ferromanganese process-material and energy balance. Proceedings - International Ferro-Alloys Congress (INFACON) VII, 1–14 June 1995 (pp. 621-630). Trondheim-Norway. The Norwegian Ferroalloy Research Organization (FFF).

Vorob’ev, V. P., Godunov, A. D., & Ignat’ev, A. V. (2009). Production of manganese alloys from rich highbasicity ore. Steel in Translation, 39(3), 243-247. DOI: 10.3103/S0967091209030152.

Mineralogia

The Journal of Mineralogical Society of Poland

Journal Information


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 192 40
PDF Downloads 58 58 15