Efficiency of Pb(II) and Mo(VI) Removal by Kaolinite Impregnated with Zero-Valent Iron Particles

Open access


In this work, kaolinite modified with zero-valent iron was synthesized and used as a sorbent for Pb(II) and Mo(VI) removal from aqueous solutions. The obtained material was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The methods revealed successful modification by the Fe0particles precipitation on the surface of well-ordered kaolinite. The sorption experiment results showed a significant increase of sorption capacity in relation to the raw kaolinite. The kaolinite with 25% content of Fe0was found to be the best material for Pb(II) and Mo(VI) removal, resulting in approximately 500 mmol·kg-1and 350 mmol·kg-1sorption, respectively. The possible mechanisms responsible for metals’ removal were identified as reduction by Fe0‘core’ and adsorption on the iron hydroxides ‘shell’. The study indicated that the obtained material is capable of efficient Pb(II) and Mo(VI) removal and may be an interesting alternative to other methods used for heavy metals’ removal.

Arancibia-Miranda, N., Baltazar, S. E., García, A., Romero, A. H., Rubio, M. A., & Altbir, D. (2014). Lead removal by nano-scale zero valent iron: surface analysis and pH effect. Materials Research Bulletin, 59, 341-348. DOI: 10.1016/j.materresbull.2014.07.045.

Azizian, S. (2004) Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276, 47-52. DOI: 10.1016/j.jcis.2004.03.048.

Balan, E., Saitta, A. M., Mauri, F., & Calas, G. (2001). First-principles modeling of the infrared spectrum of kaolinite. American Mineralogist, 86, 1321-1330. DOI: 10.2138/am-2001-11-1201.

Bhattacharyya, K. G., & Gupta, S. S. (2006). Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption, 12(3), 185-204. DOI:10.1007/s10450-006-0145-0.

Bhattacharyya, K. G., & Gupta, S. S. (2007). Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: Influence of acid activation. Journal of Colloid and Interface Science, 310(2), 411-424. DOI: 10.1016/j.jcis.2007.01.080.

Crane, R., & Scott T. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211-212, 112-125. DOI: 10.1016/j.jhazmat.2011.11.073.

Erdem, E., Karapinar, N., & Donat R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280( 2), 309-314. DOI: 10.1016/j.jcis.2004.08.028.

Grieger, K., Fjordbøge, A., Hartmann, N., Eriksson, E., Bjerg, P., & Baun A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?. Journal of Contaminant Hydrology, 118, 165-183. DOI: 10.1016/j.jconhyd.2010.07.011.

Hudcova, B., Veselska, V., Filip, J., Cíhalova, S., & Komarek M. (2016). Sorption mechanisms of arsenate on Mg-Fe layered double hydroxides: A combination of adsorption modeling and solid state analysis. Chemosphere, 168, 539-548. DOI: 10.1016/j.chemosphere.2016.11.031.

Kim, S. A., Kamala - Kannan, S., Lee, K.- J., Park, Y.- J., Shea, P. J., Lee, W.- H., Kim, H.- M., & Oh, B.- T. (2013). Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chemical Engineering Journal, 217, 54-60. DOI: 10.1016/j.cej.2012.11.097.

Koteja, A., Biskup, I., Góra, K., & Matusik, J. (2015). Organo-kaolinite as an adsorbent of Cr(III) and Ni(II) ions. In Bajda T., Hycnar E., (Eds.) Sorbenty mineralne 2015: surowce, energetyka, ochrona środowiska, nowoczesne technologie, 131-143, Kraków, Wydawnictwo AGH.

Koteja, A., & Matusik, J. (2015). Di- and triethanolamine grafted kaolinites of different structural order as adsorbents of heavy metals. Journal of Colloid and Interface Science, 455, 83-92. DOI: 10.1016/j.jcis.2015.05.027.

Leupin, O. X., & Hug, S. J. (2005). Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research, 39, 1729-1740. DOI: 10.1016/j.watres.2005.02.012.

Li, S., Wang, W., Liang, F., & Zhang, W. (2016). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of hazardous materials, 322, 163-171. DOI: 10.1016/j.jhazmat.2016.01.032.

Liu, J., Yuan, S. W., Du, H. Y., & Jiang, X. Y. (2014). Adsorption of Cd(II) from Aqueous Solution by Magnetic Graphene. Advanced Materials Research, 881-883, 1011-1014. DOI: 10.4028/www.scientific.net/AMR.881-883.1011.

Matusik, J. (2014). Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chemical Engineering Journal, 246, 244-253. DOI: 10.1016/j.cej.2014.03.004.

Meunier, N., Drogui, P., Montane, C., Hausler, R., Mercier, G., & Blais, J. F. (2006). Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. Journal of Hazardous Materials, 137, 581-590. DOI: 10.1016/j.jhazmat.2006.02.050

Oehmen, A., Viegas, R., Velizarov, S., Reis, M. A. M., & Crespo, J. G. (2006). Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor. Desalination, 199, 405-407. DOI: 10.1016/j.desal.2006.03.091.

Patnukao, P., Kongsuwan, A., & Pavasant, P. (2008). Batch studies of adsorption of copper and Pb(II) on activated carbon from Eucalyptus camaldulensis Dehn, bark. Journal of Environmental Sciences, 20, 1028-1034. DOI: 10.1016/S1001-0742(08)62145-2.

Ponder, S., Darab, J., & Mallouk, T. (2000). Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science & Technology, 34, 2564-2569. DOI: 10.1021/es9911420.

Prabu, D., & Parthiban, R. (2013). Synthesis and characterization of nanoscale zero-valent iron (NZVI) nanoparticles for environmental remediation. Asian Journal of Pharmacy and Technology, 3(4), 181-184.

Ramos, M. A. V., Yan, W. L., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. Journal of Physical Chemistry C, 113, 14591-14594. DOI:10.1021/jp9051837.

Ren, X. M., Li, J. X., Tan, X. L., & Wang, X. K. (2013). Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions, 42, 5266-5274. DOI: 10.1039/C3DT32969K.

Rui, M., Buruberri, L. H., Seabra, M. P., & Labrincha, J. A. (2016). Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters, Journal of Hazardous Materials, 318, 631-640. DOI: 10.1016/j.jhazmat.2016.07.059.

Rybka, K. (2017). Efektywność oczyszczania roztworów wodnych z wybranych anionów przez nanokompozyty otrzymane na bazie kaolinitu ze złoża Maria III, (Efficiency of selected anions removal from aqueous solutions by nanocomposites derived from Maria III kaolinite.), MSc thesis, AGH University of Science and Technology, Krakow, Poland. [in Polish].

Saada, A., Breeze, D., Crouzet, C., Cornu, S., & Baranger , P. (2003). Adsorption of arsenic(V) on kaolinite and on kaolinite-humic acid complexes: Role of humic acid nitrogen groups. Chemosphere, 51(8), 757-763. DOI: 10.1016/S0045-6535(03)00219-4.

Scott, T. B., Popescu, I. C., Crane, R. A., & Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of hazardous materials, 186, 280-287. DOI: 10.1016/j.jhazmat.2010.10.113.

Suraj, G., Iyer, C. S. P., & Lalithambika, M. (1998). Adsorption of cadmium and copper by modified kaolinites. Applied Clay Science, 13(4), 293-306. DOI: 10.1016/S0169-1317(98)00043-X.

Szala, B., Bajda, T., Matusik, J., Zięba, K., & Kijak, B. (2015). BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials, 202, 115-123. DOI: 10.1016/j.micromeso.2014.09.033.

Unuabonah, E. I., Adebowale, K. O., Olu-Owolabi, B. I., Yang, L. Z., & Kong L. X. (2008). Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy, 93, 1-9. DOI: 10.1016/j.hydromet.2008.02.009.

Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Hallam, K. R., Scott, T. B., & Lieberwirth, I. (2009). Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science, 43(2), 172-181. DOI: 10.1016/j.clay.2008.07.030.

Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Lieberwirth, I., Scott, T. B., Hallam, K. R. (2008). Application of zerovalent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. The Chemical Engineering Journal, 144(2), 213-220. DOI: 10.1016/j.cej.2008.01.024.

Wang, C., & Zhang, W. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBS. Environmental Science & Technology, 31, 2154-2156. DOI: 10.1021/es970039c.

Wang, J., Liu, G., Li, T., Zhou, C., & Qi, C. (2015). Zero-Valent Iron Nanoparticles (NZVI) Supported by Kaolinite for CuII and NiII Ion Removal by Adsorption: Kinetics, Thermodynamics, and Mechanism. Australian Journal of Chemistry., 68, 1305-1315. DOI: 10.1071/CH14675.

Xu, D., Tan, X., Chen, C., & Wang, X. (2008). Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 154, 1-3, 407-416. DOI: 10.1016/j.jhazmat.2007.10.059.

Yan, W., Ramos, M. A. V., Koel, B. E., &. Zhang, W. X. (2012). As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron microscopy. Journal of Physical Chemistry C, 116, 5303-5311. DOI: 10.1021/jp208600n.

You, Y., Vance, G. F., & Zhao, H. (2001). Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Applied Clay Science, 20, 13-25. DOI: 10.1016/S0169-1317(00)00043-0.

Zachara, J. M., Cowan, C. E., Schmidt, R. L., & Ainsworth, C. C. (1988). Chromate adsorption on kaolinite. Clays and Clay Minerals, 36(4), 317-326. DOI: 10.1346/CCMN.1988.0360405.

Zhang, Y.-Y., Jiang, H., Zhang, Y., & Xie, J.-F. (2013). The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution. Chemical Engineering Journal, 229, 412-419. DOI: 10.1016/j.cej.2013.06.031.

Zhang, X., Lin, S., Chen, Z., Megharaj, M., & Naidu, R. (2010). Kaolinite supported nanoscale zero-valent iron for removal of Pb 2 from aqueous solution: Reactivity, characterization and mechanism. Water Research, 45(11), 3481-3488. DOI: 10.1016/j.watres.2011.04.010.

Zhang, X., Lin, S., Lu, X.Q., & Chen, Z. L. (2010). Removal of Pb(II) from water using natural kaolin loaded with synthesized nanoscale zero-valent iron. The Chemical Engineering Journal 163(3), 243-248. DOI: 10.1016/j.cej.2010.07.056.

Zhang, S. Q., & Hou, W. G. (2008). Adsorption behavior of Pb(II) on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 320(1-3), 92-97. DOI: 10.1016/j.colsurfa.2008.01.038.

Zondervan, E., & Roffel, B. (2007). Evaluation of different cleaning agents used for cleaning ultra filtration membranes fouled by surface water. Journal of Membrane Science, 304, 40-49. DOI: 10.1016/j.memsci.2007.06.041.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 30
PDF Downloads 48 48 18