Optimization of Novel Sorbents for CO2Removal Based on FTIR and TG Analysis

Open access


Adsorption is considered as one of the most promising technologies for CCS. Gas adsorption involves the separation of gaseous components from flue gas using solid adsorbents. The gaseous component, adsorbate, is adsorbed from the gas phase on a solid material. Regarding CO2adsorption, it is important to consider the parameters, that is the high sorption capacity, CO2selectivity, regeneration and stability in multiple cycles. New directions for the development of adsorbents are focused on increasing their capacity - for this purpose, amine impregnation is carried out. This paper presents a new approach to obtaining mesoporous material from fly ash and, based on this, a new physico-chemical adsorbent obtained by impregnation. The effectiveness of the process was confirmed by thermogravimetric analysis and FTIR infrared spectroscopy.

Ho, M.T., Allinson, G.W., & Wiley, D.E. (2008). Reducing the cost of CO2capture from flue gases using pressure swing adsorption. Industrial and engineering chemistry research 47(14), 4883-4890. DOI: 10.1021/ie070831e.

Kumar, P., Mal, N., Oumi, Y., Yamana, K., & Sano, T. (2001). Mesoporous materials prepared using coal fly ash as the silicon and aluminium source. Journal of Materials Chemistry 11, 3285-3290. DOI: 10.1039/B104810B.

Majchrzak, A., & Majchrzak - Kucęba, I. (2013). Study of sorption capacity on various types of adsorbents depending on the temperature and CO2 content. In International Conference on Environment & Energy, 16 -17 December 2013 (pp. 220-234). Colombo, Sri Lanka: International Centre for Research and Development.

Majchrzak, A., & Nowak, W. (2017). Separation characteristics as a selection criteria of CO2adsorbents. Journal of CO2Utilization 17, 69-79. DOI: 10.1016/S2212-9820(17)30019-7.

Morrison, R. T., & Boyd, R. N. (1985). Chemia organiczna Tom 1, Warszawa: Państwowe Wydawnictwo Naukowe. [in Polish]

Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2012). Spektroskopowe metody identyfikacji związków organicznych, Warszawa: Wydawnictwo Naukowe PWN. [in Polish]

Son, W-J., Choi, J-S., & Ahn, W-S. (2008). Adsorptive removal of carbon dioxide using polyethylenimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials 113(1-3), 31-40. DOI: 10.1016/j.micromeso.2007.10.049.

Xu, X., Song, C., Andrésen, J. M., Miller, B. G., & Scaroni, A. W. (2003). Preparation and characterization of novel CO2“molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Miroporous and Mesoporous Materials 62(1-2), 29-45. DOI: 10.1016/S1387-1811(03)00388-3.

Xu, X., Song, C., Miller, B. G., & Scaroni, A. W. (2005). Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by novel nanoporous “molecular basket” adsorbent. Fuel Processing Technology 86(14-15), 1457-1472. DOI: 10.1016/j.fuproc.2005.01.002.

Yang, Q., Guillerm, V., Ragon, F., Wiersum, A. D., Llewellyn, P. L., Zhong, C., Devic, T., Serrec, C., & Maurin, G. (2012). CH4storage and CO2capture in highly porous zirconium oxide based metal-organic frameworks. Chemical Communications 48, 9831-9833. DOI: 10.1039/C2CC34714H.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 68 16
PDF Downloads 23 23 6