Changes in the Textural Parameters of Fly Ash-Derived Na-P1 Zeolite During Compaction Processes

Open access

Abstract

This paper presents the possibility of receiving the granular forms of a zeolitic material of the Na-P1 type obtained from high-calcium fly ash in a semi-technical scale by means of three compacting techniques. The compaction process was carried out using cement, molasses and water glass as binders. Each of the proposed compacting methods affected the textural parameters of the obtained granular zeolite forms, as well as the binders used. In comparison to the other binders it was found that the cement binder had the smaller impact on the values of the textural parameters of the obtained compacted zeolite forms. The surface area for the zeolite Na-P1 was 98.49 m2·g-1, for the cement as a binder was 69.23 m2·g-1, for the molasses was 52.70 m2·g-1and for the water glass was 40.87 m2·g-1. For this reason, the briquetting and extruding tests were carried out using cement as a binder.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Atkins M. Glasser F. P. & Jack J. J. (1995). Zeolite P in cements: Its potential for immobilizing toxic and radioactive waste species. Waste Management 15 (2) 127-135. DOI: 10.1016/0956-053X(95)00015-R.

  • Bandura L. Franus M. Józefaciuk G. & Franus W. (2015). Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147 100-107. DOI: 10.1016/j.fuel.2015.01.067.

  • Bieganowski A. Łagód G. Ryżak M. Montusiewicz A. Chomczyńska M. & Sochan A. (2012). Measurement of activated sludge particle diameters using laser diffraction method. Ecological Chemistry and Engineering S 19 (4) 597-608. DOI: 10.2478/v10216-011-0042-7.

  • Bowman R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials 61 43-56. DOI: 10.1016/S1387-1811(03)00354-8.

  • Chałupnik S. Franus W. Wysocka M. & Gzyl G. (2013). Application of zeolites for radium removal from mine water. Environmental Science and Pollution Research 20 7900-7906. DOI: 10.1007/s11356-013-1877-5.

  • Charkhi A. Kazemeini M. Ahmadi S. J. & Kazemian H. (2012). Fabrication of granulated NaY zeolite nanoparticles using a new method and study the adsorption properties. Powder Technology 231 1-6. DOI: 10.1016/j.powtec.2012.06.041.

  • Czurda K. A. & Haus R. (2002). Reactive barriers with fly ash zeolites for in situ groundwater remediation. Applied Clay Science 21 13-20. DOI: 10.1016/S0169-1317(01)00088-6.

  • De la Varga I. Castro J. Bentz D. & Weiss J. (2012). Application of internal curing for mixtures containing high volumes of fly ash. Cement and Concrete Composites 34 (9) 1001-1008. DOI: 10.1016/j.cemconcomp.2012.06.008.

  • Ejsymont J. Łaptaś A. & Steciu Z. (1975). PL80674. Sposób zabezpieczenia zeolitów przed zmianami własności w procesie formowania Patent - PL80674 1975. [in Polish]

  • Ejsymont J. & Witek E. (1986). Sposób granulowania zeolitów syntetycznych Patent - PL131352 1986. [in Polish]

  • Ejsymont J. Witek E. & Łaptaś A. (1981). PL103530. Sposób otrzymywania kształtek zeolitów syntetycznych Patent - PL 103530 1981. [in Polish]

  • Franus W. (2012). Characterization of X-type zeolite prepared from coal fly ash. Polish Journal of Environmental Studies 21 (2) 337-343.

  • Franus W. & Wdowin M. (2010). Removal of ammonium ions by selected natural and synthetic zeolites. Mineral Resource Management 26 133-148.

  • Franus W. Wdowin M. & Franus M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment 186 5721-5729. DOI: 10.1007/s10661-014-3815-5.

  • Gara P. Hryniewicz M. & Wisła-Walsh E. (2008). New high surface area calcareous sorbent produced in mechanical operations. Polish Journal of Environmental Studies 17 (3A) 198-202.

  • Jagielska E. M. Berak J. Bazarnik A. Kazimierczuk R. & Apczyńsk J. (1988). PL140558. Sposób formowania zeolitów Patent - PL140558 1988. [in Polish]

  • Kim K-J & Ahn H-G. (2012). The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous and Mesoporous Materials 152 78-83. DOI: 10.1016/j.micromeso.2011.11.051.

  • Klinik J. (2000). Tekstura porowatych ciał stałych. Kraków: Ośrodek Edukacji Niestacjonarnej Akademia Górniczo-Hutnicza. [in Polish]

  • Knight P. C. (2001). Structuring agglomerated products for improved performance. Powder Technology 119 (1) 14-25. DOI: 10.1016/S0032-5910(01)00400-4.

  • Kurdowski W. (2010). Chemia cementu i betonu Warszawa: Wydawnictwo naukowe PWN. [in Polish]

  • Lipkind B. A. Valuiskaya O. M. Kanakova O. A. Nefedov B. K. (1987). Forming of synthetic zeolites with binder additives into microbead granules. Chemistry and Technology of Fuels and Oils 23(10) 476-478. DOI: 10.1007/BF00724830.

  • Lippens B. C. & de Boer J. H. (1965). Studies on pore systems in catalysts. V. The t method. Journal of Catalysis 4 319-323. DOI: 10.1016/0021-9517(65)90307-6.

  • Lippens B. C. Linsen B. G. & de Boer J. H. (1964). Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation. Journal of Catalysis 3 32-37. DOI: 10.1016/0021-9517(64)90089-2.

  • Majchrzak-Kucęba I. (2011). Mikroporowate i mezoporowate materiały z popiołów lotnych. Monografie Politechniki Częstochowskiej 201 (pp. 1-208). Częstochowa : Wydaw. Politechniki Częstochowskiej. [in Polish]

  • Manikandan R. & Ramamurthy K. (2007). Influence of fineness of fly ash on the aggregate pelletization process. Cement and Concrete Composites 29(6) 456-464. DOI: 10.1016/j.cemconcomp.2007.01.002.

  • Matsi T. & Keramidas V. Z. (1999). Fly ash application on two acid soils and its effect on soil salinity pH B P and on ryegrass growth and composition. Environmental Pollution 104 107-112. DOI: 10.1016/S0269- 7491(98)00145-6.

  • Mehra A. Farago M. E. & Banerjee D. K. (1998). Impact of fly ash from coal-fired power stations in Delhi with particular reference to metal contamination. Environmental Monitoring and Assessment 50(1) 15-35. DOI: 10.1023/A:1005860015123.

  • Merrikhpour H. & Jalali M. (2012). Comparative and competitive adsorption of cadmiumcopper nickel and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy 15 303-316. DOI: 10.1007/s10098-012-0522-1.

  • Misaelides P. (2011). Application of natural zeolites in environmental remediation: a short review. Microporous and Mesoporous Materials 144 15-18. DOI: 10.1016/j.micromeso.2011.03.024.

  • Morency J. R. Panagiotou T. & Senior C. L. (2002). Zeolite sorbent that effectively removes mercury from flue gases. Filtration & Separation 39(7) 24-26. DOI: 10.1016/S0015-1882(02)80207-5.

  • Northcott K. A. Bacus J. Taya N. Komatsu Y. Perera J. M. & Stevens G. W. (2010). Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water. Journal of Hazardous Materials183 434-40. DOI: 10.1016/j.jhazmat.2010.07.043.

  • Panek R. Wisła-Walsh E. Gara P. & Wdowin M. (2016).The zeolite-carbon composite as CO2 sorbent. Proceedings - 18th International Zeolite Conference - Zeolites for a Sustainable World 19 June - 24 June 2016. Rio de Janeiro Brazil.

  • Perego C. Bagatin R. Tagliabue M. & Vignola R. (2013). Zeolites and related mesoporous materials for multitalented environmental solutions. Microporous and Mesoporous Materials 166 37-49. DOI: 10.1016/j.micromeso.2012.04.048.

  • Pietsch W. (2004). Agglomeration in Industry: Occurence and Applications (1 Ed). Weinheim: Wiley-VCH.

  • Remenárová L. Pipíška M. Florková E. Augustín J. Rozložník M. Hostin S. & Horník M. (2014). Radiocesium adsorption by zeolitic materials synthesized from coal fly ash. Nova Biotechnologica et Chimica 13(1) 57-72. DOI: 10.2478/nbec-2014-0007.

  • Sarbak Z. (2002). Surface centres for CO adsorption on supported platinum. Adsorption Science & Technology 20 347-351. DOI: abs/10.1260/02636170260295533.

  • Scrivener K. L. & Nonat A. (2011). Hydration of cementitious materials present and future. Cement and Concrete Research41(7) 651-665. DOI: 10.1016/j.cemconres.2011.03.026.

  • Simpson J. A. & Bowman R. S. (2009). Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite. Journal of Contaminant Hydrology 108 1-11. DOI: 10.1016/j.jconhyd.2009.05.001.

  • Singh N. B. Rai S. & Chaturvedi S. (2002). Hydration of Composite Cement. Progress in Crystal Growth and Characterization of Materials 45 171-174. DOI: 10.1016/S0960-8974(02)00045-1.

  • Sochon R. P. J. & Salman A. D. (2010). Particle growth and agglomeration processes. In R. Pohorecki (Eds.) Chemical Engineering and chemical process technology (vol.2) (pp.299-317). Singapore: Eolss Publishers Co. UK.

  • Srb J. & Ruzickova Z. (1988). Pelletization of Fines (Minerals Ores Coal) In D.W. Fuerstenau Advisory Editor Developments in Mineral Processing Vol 7 (pp. 292-296). Elsevier Science Publishers B.V. Amsterdam The Netherlands

  • Sumer M. (2012). Compressive strength and sulfate resistance properties of concretes containing Class F and Class C fly ashes. Construction and Building Materials 34 531-536. DOI: 10.1016/j.conbuildmat.2012.02.023.

  • Swanepoel J. C. & Strydom C. A. (2002). Utilisation of fly ash in a geopolymeric material. Applied Geochemistry17 1143-1148. DOI: 10.1016/S0883-2927(02)00005-7.

  • Szala B. Bajda T. Matusik J. Zięba K. & Kijak B. (2015). BTX sorption on Na-P1 organozeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials 202 115-123. DOI 10.1016/j.micromeso.2014.09.033.

  • Tharnzil L. (1997). Immobilization of 137Cs on cement-zeolite composites. Waste Treatment and Immobilization Technologies Involving Inorganic Sorbents. Final report IAEA-TECDOC-947. Vienna Austria: International Atomic Energy Agency Vienna 153-162.

  • Ugal J. R. Mustafa M. & Abdulhadi A. A. (2008). Preparation of zeolite type 13x from locally available raw materials. Iraqi Journal of Chemical and Petroleum Engineering 9(1) 51-56.

  • Vignola R. Bagatin R. De Folly D’Auris A. Flego C. Nalli M. Ghisletti D. (2011). Zeolites in a permeable reactive barrier (PRB): one year of field experience in a refinery groundwater-Part 1: The performances. Chemical Engineering Journal178 204-209. DOI: 10.1016/j.cej.2011.10.050.

  • Wajszel D. (1982). PL113134. Sposób formowania granule zeolitowych zwłaszcza o wymiarze ziaren 06 - 10 mm Patent - PL113134 1982. [in Polish]

  • Wdowin M. Franus M. Panek R. Bandura L. & Franus W. (2014). The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy 16 1217-1223. DOI: 10.1007/s10098-014-0719-6.

  • Wdowin M. Franus W. & Panek R. (2012). Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin 21(12) 3726-3734

  • Wdowin M. Wiatros-Motyka M. Panek R. Stevens Lee A. Wojciech F. & Snape C. E. (2014). Experimental study of mercury removal from exhaust gases. Fuel 128 451-457. DOI: 10.1016/j.fuel.2014.03.041.

  • Wdowin W. Macherzyński M. Panek R. Górecki J. & Franus W. (2015). Investigation of the mercury vapour sorption from exhaust gas by an Ag-X zeolite. Clay Minerals 50(1) 31-40. DOI: 10.1180/claymin.2015.050.1.04.

  • Wisła-Walsh E. Mięso R. & Sikora W.S. (1999). Research into fly ash agglomeration process and physicochemical properties of pellets. Mineralogia Special Papers 13 (pp.100-120). Kraków: Mineralogical Society of Poland.

  • Yang R. Liao W-P. & Wu P-H. (2012). Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. Journal of Environmental Management 104 67-76. DOI: 10.1016/j.jenvman.2012.03.008.

  • Yoo J. G. & Jo Y. M. (2003). Finding the optimum binder for fly ash pelletization. Fuel Processing Technology 81(3) 173-186. DOI: 10.1016/S0378-3820(03)00011-0.

  • Zhang M. Zhang H. Xu D. Han L. Niu D. & Tian B. (2011). Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination 271 111-121. DOI: 10.1016/j.desal.2010.12.021.

Search
Journal information
Impact Factor
CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 218 203 13
PDF Downloads 122 115 6