Changes in the Textural Parameters of Fly Ash-Derived Na-P1 Zeolite During Compaction Processes

Open access


This paper presents the possibility of receiving the granular forms of a zeolitic material of the Na-P1 type obtained from high-calcium fly ash in a semi-technical scale by means of three compacting techniques. The compaction process was carried out using cement, molasses and water glass as binders. Each of the proposed compacting methods affected the textural parameters of the obtained granular zeolite forms, as well as the binders used. In comparison to the other binders it was found that the cement binder had the smaller impact on the values of the textural parameters of the obtained compacted zeolite forms. The surface area for the zeolite Na-P1 was 98.49 m2·g-1, for the cement as a binder was 69.23 m2·g-1, for the molasses was 52.70 m2·g-1and for the water glass was 40.87 m2·g-1. For this reason, the briquetting and extruding tests were carried out using cement as a binder.

Atkins, M., Glasser, F. P., & Jack J. J. (1995). Zeolite P in cements: Its potential for immobilizing toxic and radioactive waste species. Waste Management, 15 (2), 127-135. DOI: 10.1016/0956-053X(95)00015-R.

Bandura, L., Franus, M., Józefaciuk, G., & Franus, W. (2015). Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel, 147, 100-107. DOI: 10.1016/j.fuel.2015.01.067.

Bieganowski, A., Łagód, G., Ryżak, M., Montusiewicz, A., Chomczyńska, M., & Sochan, A. (2012). Measurement of activated sludge particle diameters using laser diffraction method. Ecological Chemistry and Engineering S, 19 (4), 597-608. DOI: 10.2478/v10216-011-0042-7.

Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61, 43-56. DOI: 10.1016/S1387-1811(03)00354-8.

Chałupnik, S., Franus, W., Wysocka, M., & Gzyl, G. (2013). Application of zeolites for radium removal from mine water. Environmental Science and Pollution Research, 20, 7900-7906. DOI: 10.1007/s11356-013-1877-5.

Charkhi, A., Kazemeini, M., Ahmadi, S. J., & Kazemian, H. (2012). Fabrication of granulated NaY zeolite nanoparticles using a new method and study the adsorption properties. Powder Technology , 231, 1-6. DOI: 10.1016/j.powtec.2012.06.041.

Czurda, K. A., & Haus, R. (2002). Reactive barriers with fly ash zeolites for in situ groundwater remediation. Applied Clay Science, 21, 13-20. DOI: 10.1016/S0169-1317(01)00088-6.

De la Varga, I., Castro, J., Bentz, D., & Weiss, J. (2012). Application of internal curing for mixtures containing high volumes of fly ash. Cement and Concrete Composites, 34 (9), 1001-1008. DOI: 10.1016/j.cemconcomp.2012.06.008.

Ejsymont, J., Łaptaś, A., & Steciu, Z. (1975). PL80674. Sposób zabezpieczenia zeolitów przed zmianami własności w procesie formowania, Patent - PL80674, 1975. [in Polish]

Ejsymont, J., & Witek, E. (1986). Sposób granulowania zeolitów syntetycznych, Patent - PL131352, 1986. [in Polish]

Ejsymont, J., Witek, E., & Łaptaś, A. (1981). PL103530. Sposób otrzymywania kształtek zeolitów syntetycznych, Patent - PL 103530, 1981. [in Polish]

Franus, W. (2012). Characterization of X-type zeolite prepared from coal fly ash. Polish Journal of Environmental Studies, 21 (2), 337-343.

Franus, W., & Wdowin, M. (2010). Removal of ammonium ions by selected natural and synthetic zeolites. Mineral Resource Management, 26, 133-148.

Franus, W., Wdowin, M., & Franus, M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186, 5721-5729. DOI: 10.1007/s10661-014-3815-5.

Gara, P., Hryniewicz, M., & Wisła-Walsh, E. (2008). New high surface area calcareous sorbent produced in mechanical operations. Polish Journal of Environmental Studies, 17 (3A), 198-202.

Jagielska, E. M., Berak, J., Bazarnik, A., Kazimierczuk, R., & Apczyńsk, J. (1988). PL140558. Sposób formowania zeolitów, Patent - PL140558, 1988. [in Polish]

Kim, K-J, & Ahn, H-G. (2012). The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous and Mesoporous Materials, 152, 78-83. DOI: 10.1016/j.micromeso.2011.11.051.

Klinik, J. (2000). Tekstura porowatych ciał stałych. Kraków: Ośrodek Edukacji Niestacjonarnej Akademia Górniczo-Hutnicza. [in Polish]

Knight, P. C. (2001). Structuring agglomerated products for improved performance. Powder Technology, 119 (1), 14-25. DOI: 10.1016/S0032-5910(01)00400-4.

Kurdowski, W. (2010). Chemia cementu i betonu, Warszawa: Wydawnictwo naukowe PWN. [in Polish]

Lipkind, B. A., Valuiskaya, O. M., Kanakova, O. A., Nefedov, B. K. (1987). Forming of synthetic zeolites with binder additives into microbead granules. Chemistry and Technology of Fuels and Oils, 23(10), 476-478. DOI: 10.1007/BF00724830.

Lippens, B. C., & de Boer, J. H. (1965). Studies on pore systems in catalysts. V. The t method. Journal of Catalysis, 4, 319-323. DOI: 10.1016/0021-9517(65)90307-6.

Lippens, B. C., Linsen, B. G., & de Boer, J. H. (1964). Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation. Journal of Catalysis, 3, 32-37. DOI: 10.1016/0021-9517(64)90089-2.

Majchrzak-Kucęba, I. (2011). Mikroporowate i mezoporowate materiały z popiołów lotnych. Monografie Politechniki Częstochowskiej, 201, (pp. 1-208). Częstochowa : Wydaw. Politechniki Częstochowskiej. [in Polish]

Manikandan, R., & Ramamurthy, K. (2007). Influence of fineness of fly ash on the aggregate pelletization process. Cement and Concrete Composites, 29(6), 456-464. DOI: 10.1016/j.cemconcomp.2007.01.002.

Matsi, T., & Keramidas, V. Z. (1999). Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and on ryegrass growth and composition. Environmental Pollution, 104, 107-112. DOI: 10.1016/S0269- 7491(98)00145-6.

Mehra, A., Farago, M. E., & Banerjee, D. K. (1998). Impact of fly ash from coal-fired power stations in Delhi, with particular reference to metal contamination. Environmental Monitoring and Assessment, 50(1), 15-35. DOI: 10.1023/A:1005860015123.

Merrikhpour, H., & Jalali, M. (2012). Comparative and competitive adsorption of cadmium,copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy, 15, 303-316. DOI: 10.1007/s10098-012-0522-1.

Misaelides, P. (2011). Application of natural zeolites in environmental remediation: a short review. Microporous and Mesoporous Materials, 144, 15-18. DOI: 10.1016/j.micromeso.2011.03.024.

Morency, J. R., Panagiotou, T., & Senior, C. L. (2002). Zeolite sorbent that effectively removes mercury from flue gases. Filtration & Separation, 39(7), 24-26. DOI: 10.1016/S0015-1882(02)80207-5.

Northcott, K. A., Bacus, J., Taya, N., Komatsu, Y., Perera, J. M., & Stevens, G. W. (2010). Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water. Journal of Hazardous Materials183, 434-40. DOI: 10.1016/j.jhazmat.2010.07.043.

Panek, R., Wisła-Walsh, E., Gara, P., & Wdowin, M. (2016).The zeolite-carbon composite as CO2 sorbent. Proceedings - 18th International Zeolite Conference - Zeolites for a Sustainable World, 19 June - 24 June 2016. Rio de Janeiro, Brazil.

Perego, C., Bagatin, R., Tagliabue, M., & Vignola, R. (2013). Zeolites and related mesoporous materials for multitalented environmental solutions. Microporous and Mesoporous Materials, 166, 37-49. DOI: 10.1016/j.micromeso.2012.04.048.

Pietsch, W. (2004). Agglomeration in Industry: Occurence and Applications (1 Ed). Weinheim: Wiley-VCH.

Remenárová, L., Pipíška, M., Florková, E., Augustín, J., Rozložník, M., Hostin, S., & Horník M. (2014). Radiocesium adsorption by zeolitic materials synthesized from coal fly ash. Nova Biotechnologica et Chimica, 13(1), 57-72. DOI: 10.2478/nbec-2014-0007.

Sarbak, Z. (2002). Surface centres for CO adsorption on supported platinum. Adsorption Science & Technology, 20, 347-351. DOI: abs/10.1260/02636170260295533.

Scrivener, K. L., & Nonat, A. (2011). Hydration of cementitious materials, present and future. Cement and Concrete Research41(7), 651-665. DOI: 10.1016/j.cemconres.2011.03.026.

Simpson, J. A., & Bowman, R. S. (2009). Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite. Journal of Contaminant Hydrology, 108, 1-11. DOI: 10.1016/j.jconhyd.2009.05.001.

Singh, N. B., Rai, S., & Chaturvedi, S. (2002). Hydration of Composite Cement. Progress in Crystal Growth and Characterization of Materials, 45, 171-174. DOI: 10.1016/S0960-8974(02)00045-1.

Sochon, R. P. J., & Salman, A. D. (2010). Particle growth and agglomeration processes. In R. Pohorecki (Eds.), Chemical Engineering and chemical process technology (vol.2) (pp.299-317). Singapore: Eolss Publishers Co. UK.

Srb J., & Ruzickova Z. (1988). Pelletization of Fines (Minerals, Ores, Coal) In D.W. Fuerstenau, Advisory Editor, Developments in Mineral Processing Vol 7 (pp. 292-296). Elsevier Science Publishers B.V., Amsterdam, The Netherlands

Sumer, M. (2012). Compressive strength and sulfate resistance properties of concretes containing Class F and Class C fly ashes. Construction and Building Materials, 34, 531-536. DOI: 10.1016/j.conbuildmat.2012.02.023.

Swanepoel, J. C., & Strydom, C. A. (2002). Utilisation of fly ash in a geopolymeric material. Applied Geochemistry17, 1143-1148. DOI: 10.1016/S0883-2927(02)00005-7.

Szala, B., Bajda, T., Matusik, J., Zięba, K., & Kijak, B. (2015). BTX sorption on Na-P1 organozeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials, 202, 115-123. DOI 10.1016/j.micromeso.2014.09.033.

Tharnzil L. (1997). Immobilization of 137Cs on cement-zeolite composites. Waste Treatment and Immobilization Technologies Involving Inorganic Sorbents. Final report IAEA-TECDOC-947. Vienna, Austria: International Atomic Energy Agency, Vienna, 153-162.

Ugal, J. R., Mustafa, M., & Abdulhadi, A. A. (2008). Preparation of zeolite type 13x from locally available raw materials. Iraqi Journal of Chemical and Petroleum Engineering, 9(1), 51-56.

Vignola, R., Bagatin, R., De Folly D’Auris, A., Flego, C., Nalli, M., Ghisletti, D. (2011). Zeolites in a permeable reactive barrier (PRB): one year of field experience in a refinery groundwater-Part 1: The performances. Chemical Engineering Journal178, 204-209. DOI: 10.1016/j.cej.2011.10.050.

Wajszel, D. (1982). PL113134. Sposób formowania granule zeolitowych zwłaszcza o wymiarze ziaren 0,6 - 1,0 mm, Patent - PL113134 1982. [in Polish]

Wdowin, M., Franus, M., Panek, R., Bandura, L., & Franus, W. (2014). The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy, 16, 1217-1223. DOI: 10.1007/s10098-014-0719-6.

Wdowin, M., Franus, W., & Panek, R. (2012). Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin, 21(12), 3726-3734

Wdowin, M., Wiatros-Motyka, M., Panek, R., Stevens, Lee A., Wojciech, F., & Snape, C. E. (2014). Experimental study of mercury removal from exhaust gases. Fuel, 128, 451-457. DOI: 10.1016/j.fuel.2014.03.041.

Wdowin, W., Macherzyński, M., Panek, R., Górecki, J., & Franus, W. (2015). Investigation of the mercury vapour sorption from exhaust gas by an Ag-X zeolite. Clay Minerals, 50(1), 31-40. DOI: 10.1180/claymin.2015.050.1.04.

Wisła-Walsh, E., Mięso, R., & Sikora, W.S. (1999). Research into fly ash agglomeration process and physicochemical properties of pellets. Mineralogia Special Papers, 13, (pp.100-120). Kraków: Mineralogical Society of Poland.

Yang, R., Liao, W-P., & Wu, P-H. (2012). Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. Journal of Environmental Management 104, 67-76. DOI: 10.1016/j.jenvman.2012.03.008.

Yoo, J. G., & Jo, Y. M. (2003). Finding the optimum binder for fly ash pelletization. Fuel Processing Technology 81(3), 173-186. DOI: 10.1016/S0378-3820(03)00011-0.

Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., & Tian, B. (2011). Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination, 271, 111-121. DOI: 10.1016/j.desal.2010.12.021.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 18
PDF Downloads 54 54 11