Assessment of Heavy Metals Inactivation in Contaminated Soil by Coal Fly and Bottom Ashes

Open access


The study compared coal fly and bottom ashes for their ability to inactivate metals and lead to soil remediation. Soil was artificially contaminated with Cu, Zn, Pb and Cd at five degrees. Next, both ashes were added at five rates: 0, 0.5, 1.0, 1.5 and 2.0% and all treatments incubated. Data showed that for moderately contaminated soils, ash rates of 0.5 - 1.0% were efficient from 40 to 70% for Zn and Cd, and raised markedly to between 70 and 93% for Cu and Pb. For extremely contaminated soils, the rates of ashes at 1.0, 1.5 and 2% were much more efficient (60 - 80%). The use of fly and bottom ashes for metal inactivation and soil remediation should give greater consideration to the effect of pH and the type of heavy metals than the content of SiO2and Al2O3. Fly ash displayed superior inactivation and remediation effects to the bottom ash.

Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121-142. DOI: 10.1016/j.geoderma.2004.01.003.

Antonkiewicz, J. (2007). Influence of different ash-sludge and ash-peat mixtures on the yield and elements content of a grass and birdsfoot trefoil mixted stand. Part II. Heavy metals. Zeszyty Problemów Postępów Nauk Rolniczych, 520, 265-278 [in Polish].

Bada, S. O., & Potgieter-Vermaak, S. (2008). Evaluation and treatment of coal fly ash for adsorption application. Leonardo Electronic Journal of Practices and Technologies, 12, 37-48.

Barrow, N. J. (1999). The four laws of soil chemistry: The Lepper lecture 1998. Australian Journal of Soil Research 37, 787-829.

Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127, 3-82. DOI: 10.1016/S0269- 7491(03)00250-1.

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of American Chemical Society 60, 309-319. DOI: 10.1021/ja01269a023.

Bradshaw, A. (2000). The use of natural processes in reclamation - Advantages and Difficulties. Landscape and Urban Planning, 51(2-4), 89-100. DOI: 10.1016/S0169-2046(00)00099-2.

Carlon, C., Norbiato, M., Critto, A., & Marcomini, A. (2000). Risk analysis applied to a contaminated industrial site: Determination of risk based remedial targets. Annale Chimica, 90, 349-358.

Carter, D. L., Mortland, M. M., & Kemper, W. D. (1986). Specific Surface. Methods of Soil Analysis. Chapter 16, Agronomy, No. 9, Part 1, 2nd Ed., American Society of Agronomy.

Ciccu, R., Ghiani M., Peretti, R., Serci A., & Zucca A. (2001). Heavy metal immobilisation using fly ash in soil contaminated by mine activity. International Ash Utilization Symposium. Center for Applied Energy Research, University of Kentucky. Paper #6 (

Circular Economy Package (CEP): (Entry 15.07.2017) de Jong, E. (1999). Comparison of three methods of measuring surface area of soils. Canadian Journal of Soil Science 79, 345-351. DOI: 10.4141/S98-069.

Diatta, J. B., Grzebisz, W., & Wiatrowska, K. (2004). Competitivity, selectivity, and heavy metals-induced alkaline cation displacement in soils. Soil Science and Plant Nutrition, 50(6), 899-908. DOI: 10.1080/00380768.2004.10408552.

Diatta, J. B., Grzebisz, W., & Wiatrowska, K. (2007). Assessment of copper and zinc stabilization process in soils after the application of brown coal, sugar beet leaves and cement. Ecological Chemistry and Engineering, 14(2),181-189.

Diatta, J. B., & Chudzińska, E. (2009). Chemical remediation of zinc contaminated soils by applying a cementbrown coal-based component (CEMBRO). Ochrona Środowiska i Zasobów Naturalnych, 41, 89-101.

Diatta, J. B., Skubiszewska, A., & Witczak R. (2009). Assessment of chemical degradation of selected soil properties as induced by copper, zinc and hydrogen. Ecological Chemistry and Engineering A, 16, 1-10.

Diatta, J. B., Komisarek, J., & Wiatrowska, K. (2012). Evaluation of heavy metals competitive sorption and potential mobility on the basis of Cu/Cd and Zn/Pb binary systems. Fresenius Environmental Bulletin, 21(5), 1105-1109.

Fotovat, A., Naidu, R., & Sumner M. E. (1997). Water: soil ratio influences aqueous phase chemistry of indigenous copper and zinc in soils. Australian Journal of Soil Research 35, 687-709. DOI: 10.1071/S96086.

Gajda, A., Jaworski W., & Barc W. (2002). Prognosis in the production of coal combustion by-products at professional power stations to 2015. Biuletyn Miesięczny PSE SA, 11(137), 2-14 [in Polish].

Gluzińska, J. Walawska B., & Łuczkowska D. (2016). Properties of waste fly ash as a hard coal combustion byproduct after the application of dry sodium sorbents to purify flue gases. Prace Instytutu Mechaniki Górotworu PAN, 18(3), 83-91 [in Polish].

Gregg, S. J., & Sing, K. S. W. (1967). Adsorption, Surface Area and Porosity. Academic Press Inc, London, UK, p. 44-50.

Gupta, S. K., Herren, T., Wenger, K., Krebs, R., & Hari, T. (2000). In-situ gentle remediation measures for heavy metal-polluted soils, [in:] Phytoremediation of contaminated soil and water. Soil and Water Pollution , CRC Press LLC, p. 303-322.

Hycnar, J. J., Szczygielski, T., Lysek, N., & Rajczyk, K. (2014). Trends in the optimalisation of the management of coal combustion by-products. Piece Przemysłowe i Kotły, 5-6,16-27 [in Polish].

Ibekwe, A. M, Angle, J. S, Chaney, R. L, & Van Berkum, P. (1997). Enumeration and N2 fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agriculture Ecosystems and Environment 61,1679-1685.

International Standard (1995). Soil quality - Extraction of trace elements soluble in aqua regia, ISO 11466 Geneva.

Kabata-Pendias, A., Motowicka-Terelak, T., Piotrowska, M., Terelak, H., & Witek, T. (1993). Evaluation of the degree of soils and plants contamination by heavy metals and sulphur. Framework guidelines for agriculture. IUNG Puławy P(53), 20 p. (in Polish).

Krebs, R., Gupta, S. K., Furrer, & Schulin, G. R. (1999). Gravel sludge as immobilizing agent in soils contaminated by heavy metals: a field study. Water, Air and Soil Pollution, 115, 465-479. DOI: 10.1023/A:1005167004828.

Kumpiene, J., Lagerkvist A., & Maurice C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Management 28, 215-225. DOI: 10.1016/j.wasman.2006.12.012.

Lombi, E., Hamon, R. E., McGrath, S. P. & Mc-Laughlin, M. J. (2003). Lability of Cd, Cu and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science and Technology, 37(5), 979-984. DOI: 10.1021/es026083w.

Łączny, M. J. (2002). Non-conventional method of utilization of fly ash. Central Mining Institute, Katowice, pp. 7-19.

Matsi, T. & Keramidas, V. Z. (1999). Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and ryegrass growth and composition. Environmental Pollution, 104(1), 107-112. DOI: 10.1016/S0269- 7491(98)00145-6.

McBride, M. B., Sauvé, S., & Hendershot W. (1997). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48, 337-346. DOI: 10.1111/j.1365-2389.1997.tb00554.x.

McGowen, S. L. (2000). In-situ chemical treatments for reducing metal solubility and transport in smelter contaminated soils. Ph.D. Diss. Dep. Plant and Soil Sciences, Oklahoma State Univ., Stillwater, OK.

Mench, M., Vangronsveld, J., Lepp, N. W., & Edwards, R. (1998). Physicochemical aspects and efficiency of trace element immobilization by soil amendments. In: J. Vangronsveld and S. D. Cunningham (editors): Metal-Contaminated Soils: In-situ inactivation and phytorestoration, pp. 151-182. Springer Verlag, Berlin Heidelberg. ISBN: 1-57059-531-3.

Mohapatra, R., & Rao, J. R. (2001). Some aspects of characterisation, utilisation and environmental effects of fly ash (a Review). Journal of Chemical Technology and Biotechnology, 76(1), 9-26. DOI: 10.1002/1097- 4660(200101)76:1<9::AID-JCTB335>3.0.CO;2-5.

Oste, L. A., Lexmond, T. M. & Van Riemsdijk, W. H. (2002). Metal immobilization in soils using synthetic zeolites. Journal of Environmental Quality, 31(3), 813-821.

Percival, H. J, Speir, T. W, & Parshotam, A. (1999). Soil solution chemistry of contrasting soils amended with heavy metals. Australian Journal of Soil Research 37, 993-1004. DOI: 10.1071/SR98055.

Polish Standard (1994). Polish Standardisation Committee, ref. PrPN-ISO 10390 (E): Soil quality and pH determination. First edition (in Polish).

Querol, A. A., Moreno, N., Alvarez-Ayuso, E., García-Sánchez, A., Cama, J., Ayora, C. & Simón, M. (2005). Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 62(2), 171-180. DOI: 10.1016/j.chemosphere.2005.05.029.

Ramme, B. W., & Tharaniyil, M. P. (2013). We Energies - Coal Combustion Products Utilization Handbook. Copyright 2013, Wisconsin Electric Power Company. 3rd Edition, Manufactured in the United States of America, 448 p.

Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In: Sparks D.L. et al. (ed). Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI, 417-435.

Robl, T., Mahboub, K., Will, S., & Robert R. (2010). Fluidized bed combustion ash utilization: CFBC fly ash as a pozzolanic additive to Portland cement concrete. Coventry University and the University of Wisconsin Milwaukee Centre for By-products Utilization. Second International Conference on Sustainable Construction Materials and Technologies (June 28-30, 2010). Universita Politecnica delle Marche, Ancona, Italy. Special Technical Proceedings ed. Claisse, P., Ganjian, E., Canpolat, F., & Naik, T. (ISBN 978-1-4507-1488-4).

Sanderson, R. (1989). Electronegativity and bond energy. Journal of American Chemical Society, 105(8), 2259-2261.

Sarbak, Z., & Kramer-Wachowiak, M., 2012: The use of fly ash as sorbents for heavy metals. Przemysł Chemiczny, 91(2), 189-192 [in Polish].

Schutter, M. E., & Fuhrmann, J. J. (2001). Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates. Soil Biology and Biochemistry 33(14), 1947-1958.

Singh, S. D. C. & Shea, P. J. (1999). Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH. Environmental Science and Technology, 33(9), 1488-1494. DOI: 10.1021/es9806175.

Sparks, D. L. (1995). Environmental soil chemistry. Academic Press Inc. San Diego, California: 267 p. Stevens, G., & Dunn, D. (2004). Fly ash as a liming material for cotton. Journal of Environmental Quality, 33(1), 343-348. DOI: 10.2134/jeq2004.0343.

Szymańska, I. (2013). Combustion By-Products - waste, product, raw material. [in Polish]

Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R. & Nowack, B., (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology, 38(3), 937-944. DOI: 10.1021/es0348750.

Thomas, G.W. (1982): Exchangeable cations. (p. 159-165). Methods of Soil Analysis, Part 2. Chemical and Microbial Properties (No. 9), ASA-SSSA. Second Edition. Edited by Page A. L., Miller, R. H. & Keeney D.R. Madison, Wisconsin, USA

Terzano, R., Spagnuolo, M., Medici, L., & Ruggiero, P. (2004). Stabilization of Cu and Cd in the presence of montmorillonite by means of coal fly ash. Fresenius Environmental Bulletin 13(10), 995-999.

Ulmanu, M., Matsi, T., Anger, I., Gament, E., Olanescu, G., Predescu, C., Sohaciu, M. (2007). The remedial treatment of soil polluted with heavy metals using fly ash. University Politehnica București Scientific Bulletin B/69(2), 109-116.

Wei, Y. L., Yang, Y. W. & Cheng, N. (2001). Study of thermally immobilized Cu in analogue minerals of contaminated soils. Environmental Science and Technology, 35(2), 416-421. DOI: 10.1021/es0008721.

Właśniewski, S. (2009). Effect of fertilization with fly ash from black coal on some chemical properties of sandy soil and yields of oat. Ochrona Środowiska i Zasobów Naturalnych, 41, 479-488.

Xiao, R., Chen, X., Wang, F., & Yu, G. (2011). The physicochemical properties of different biomass ashes at different ashing temperature. Renewable Energy 36, 244-249. DOI: 10.1016/j.renene.2010.06.027.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 11
PDF Downloads 45 45 7