Vitrinite equivalent reflectance of Silurian black shales from the Holy Cross Mountains, Poland

Open access

Abstract

A number of independent methods have been used to measure the thermal maturity of Silurian rocks from the Holy Cross Mountains in Poland. Black shales are characterized by diverse TOC values varying from 0.24-7.85%. Having calculated vitrinite equivalent reflectance using three different formulas, we propose that the most applicable values for the Silurian rocks are those based on Schmidt et al. (2015) equation. Based on this formula, the values range from % 0.71 VReqvVLR (the vitrinite equivalent reflectance of the vitrinite-like macerals) to % 1.96 VReqvVLR. Alternative, complementary methods including Rock Eval pyrolysis and parameters based on organic compounds (CPI, Pr/n-C17, Ph/n-C18, MPI1, and MDR) from extracts did not prove adequate as universal thermal maturity indicators. We have confirmed previous suggestions that Llandovery shales are the most likely Silurian source rocks for the generation of hydrocarbons in the HCM.

Alexander, R., Bastow, T.P., Fisher, S.J., & Kagi, R.I. (1995). Geosynthesis of organic compounds: II. Methylation of phenanthrene and alkylphenanthrene. Geochimica et Cosmochimica Acta, 59(20), 4259-4266.

Bastow, T.P., van Aarssen, B.G.K., & Lang, D., (2007). Rapid small-scale separation of saturate, aromatic and polar components in petroleum. Organic Geochemistry, 38(8), 1235-1250. DOI:10.1016/j.orggeochem.2007.03.004.

Belka, Z. (1990). Thermal maturation and burial history from conodont colour alteration data, Holy Cross Mountains, Poland. Courier Forschungs-Institut Senckenberg, 118, 241-251.

Grotek, I. (2006). Dojrzałość termiczna materii organicznej z utworów pokrywy osadowej pomorskiego odcinka TESZ, basenu bałtyckiego oraz obszarów przyległych. Prace Państwowego Instytutu Geologicznego, 186, 253-270.

Hunt, J.M. (1996). Petroleum Geochemistry and Geology. New York: W.H. Freeman and Company.

Issler, D.R., Obermajer, M., Reyes, J., & Li, M. (2012). Integrated analysis of vitrinite reflectance, Rock-Eval 6, gas chromatography, and gas chromatography-mass spectrometry data for the Mallik A-06, Parsons N-10 and Kugaluk N-02 wells, Beaufort-Mackenzie Basin, northern Canada. Geological Survey Of Canada, Open File 6978, 78 p. DOI:10.4095/289672.

Joachimski, M.M., Ostertag-Henning, C., Pancost, R.D., Strauss, H., Freeman, K.H., Littke, R., Sinninghe Damsté, J.S. & Racki, G. (2001). Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala — Holy Cross Mountains/Poland). Chemical Geology, 175(1-2), 109-131. DOI: 10.1016/S0009-2541(00)00365-X.

Kozłowski, W., Domańska-Siuda, J., & Nawrocki, J. (2014). Geochemistry and petrology of the Upper Silurian greywackes from the Holy Cross Mountains (central Poland): implications for the Caledonian history of the southern part of the Trans-European Suture Zone (TESZ). Geological Quarterly, 58(2), 311-336. DOI: 10.7306/gq.1160.

Malec, J. (2000). Wstępne dane o przeobrażeniach termicznych materii organicznej w szarogłazach górnego syluru Gór Świętokrzyskich. Posiedzenia Naukowe Państwowego Instytutu Geologicznego, 56, 109-111.

Malec, J. (2006). Sylur w Górach Świętokrzyskich. Procesy i zdarzenia w historii geologicznej Gór Świętokrzyskich, Przewodnik 77 Zjazdu Naukowego PTG, 28–30 June 2006 (pp. 36-50). Warszawa: Państwowy Instytut Geologiczny.

Malec, J., Więcław, D., & Zbroja, S. (2010). Wstępna ocena macierzystości wybranych utworów paleozoiku Gór Świętokrzyskich. Geologia, 36(1), 5-24.

Marynowski, L. (1999). Thermal maturity of organic matter in Devonian rocks of the Holy Cross Mountains. Przegląd Geologiczny, 47 (in Polish with English summary), 1125-1129.

Marynowski, L., & Filipiak, P. (2007). Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine, 144(3), 569-595. DOI: 10.1017/S0016756807003317.

Marynowski, L., & Simoneit, B.R.T. (2009). Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios, 24(12), 785-798. DOI: 10.2110/palo.2009.p09-044r.

Marynowski, L., Czechowski, F. & Simoneit, B.R.T. (2001). Phenylnaphthalenes and polyphenyls in Palaeozoic source rocks of the Holy Cross Mountains, Poland. Organic Geochemistry, 32(1), 69-85. DOI: 10.1016/S0146-6380(00)00150-9.

Marynowski, L., Salamon, M. & Narkiewicz, M. (2002). Thermal maturity and depositional environments of organic matter in the post-Variscan succession of the Holy Cross Mountains. Geological Quarterly, 46(1), 25-36.

Marynowski, L., Rakociński, M., & Zatoń, M. (2007). Middle Fammenian (Late Devonian) interval with pyritized fauna from the Holy Cross Mountains (Poland): Organic geochemistry and pyrite framboid diameter study. Geochemical Journal, 41(3), 187-200. DOI: 10.2343/geochemj.41.187

Marynowski, L., Filipiak, P., & Zatoń, M. (2010). Geochemical and palynological study of the Upper Famennian Dasberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine, 147(4), 527-550. DOI: 10.1017/S0016756809990835.

Narkiewicz, K., & Malec, J. (2005). New conodont CAI database. Przegląd Geologiczny, 53 (in Polish), 33-37.

Narkiewicz, M. (2002). Ordovician through earliest Devonian development of the Holy Cross Mts. (Poland): constraints from subsidence and thermal maturity data. Geological Quarterly, 46(3), 255-266.

Narkiewicz, M., Racki, G., Skompski, S. & Szulczewski, M. (2006). Records of processes and events in the Devonian and Carboniferous of the Holy Cross Mountains. Procesy i zdarzenia w historii geologicznej Gór Świętokrzyskich, Przewodnik 77 Zjazdu Naukowego PTG, 28–30 June 2006 (pp. 51-77). Warszawa: Państwowy Instytut Geologiczny.

Narkiewicz, M., Resak, M., Littke, R., & Marynowski, L. (2010). New constraints on the Middle Palaeozoic to Cenozoic burial and thermal history of the Holy Cross Mts. (Central Poland): results of numerical modeling. Geologica Acta, 8(2), 189-205. DOI: 10.1344/105.000001529.

Nehring-Lefeld, M., Modliński, Z., & Swadowska, E. (1997). Thermal evolution of the Ordovician in the western margin of the East-European Platform: CAl and Ro data. Geological Quarterly, 41(2), 129-138.

Peters, K.E., & Cassa, M.R. (1994). Applied source rock geochemistry, in Magoon, L.B., and Dow, W.G., eds., The petroleum system—From source to trap: Tulsa, Okla. American Association of Petroleum Geologists Memoir, 60, 93-117.

Petersen, H.I., Schovsbo, N.H., & Nielsen, A.T. (2013). Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance. International Journal of Coal Geology, 114, 1-18. DOI: 10.1016/j.coal.2013.03.013.

Poprawa, P. (2010). Potencjał występowania złóż gazu ziemnego w łupkach dolnego paleozoiku w basenie bałtyckim i lubelsko-podlaskim. Przegląd Geologiczny, 58, 226-249.

Poprawa, P., Żywiecki, M.M., & Grotek I. (2005). Burial and thermal history of the Holy Cross Mts. area - preliminary results of maturity modelling. Polskie Towarzystwo Mineralogiczne – Prace Specjalne, 26, 251-254.

Romanek, A., & Rup, M. (1990). Podział litostratygraficzny dewonu w profilu otworu wiertniczego Kowala 1. Geological Quarterly, 34(2), 221-242.

Rospondek, M.J., Marynowski, L., Chachaj, A., & Góra, M. (2009). Novel aryl polycyclic aromatic hydrocarbons: Phenylphenanthrene and phenylanthracene identification, occurrence and distribution in sedimentary rocks. Organic Geochemistry, 40(9), 986-1004. doi:10.1016/j.orggeochem.2009.06.001.

Radke, M. (1988). Application of aromatic compounds as maturity indicators in source rocks and crude oils. Marine and Petroleum Geology, 5(30, 224-236. DOI: 10.1016/0264-8172(88)90003-7.

Schmidt, J.S., Araujo, C.V., Souza, I.V.A.F. & Chakas, R.B.A. (2015). Hydrous pyrolysis maturation of vitrinite-like and humic vitrinite macerals: Implications for thermal maturity analysis. International Journal of Coal Geology, 144-145, 5-14. DOI: 10.1016/j.coal.2015.03.016.

Suárez-Ruiz, I., Flores, D., Filho, J.G.M., & Hackley, P.C. (2012). Review and update of the applications of organic petrology: Part 1, geological applications. International Journal of Coal Geology, 99, 54-112. DOI: 10.1016/j.coal.2012.02.004.

Stęmpień-Sałek, M. (2011). Palynomorph assemblages from the Upper Ordovician in Northern and Central Poland. Annales Societatis Geologorum Poloniae, 81(1), 21–61.

Swadowska, E. & Sikorska, M. (1998). Historia pogrzebania skał kambru na podstawie refleksyjności macerałów witrynitopodobnych w polskiej części platformy wschodnioeuropejskiej. Przegląd Geologiczny, 46, 699-706.

Szczepanik, Z. (1997). Preliminary results of thermal alternation investigations of the Cambrian acritarchs in the Holy Cross Mts. Geological Quarterly, 41(3), 257-264.

Szczepanik, Z. (2001). Acritarchs from Cambrian deposits of the southern part of the Łysogóry unit in the Holy Cross Mountains, Poland. Geological Quarterly, 45(2), 117-130.

Szczepanik, Z. (2007). Regionalny gradient paleotermiczny w zapisie palinologicznym starszego paleozoiku i dewonu Gór Świętokrzyskich. (In Polish). Granice paleontologii, XX konferencja Naukowa Paleobiologów i Biostratygrafów PTG, Materiały konferencyjne, 10-13 September 2007 (pp. 129-132). Warszawa: Wydział Geologii UW.

Środoń, J., & Trela, W. (2012). Preliminary clay mineral data on burial history of the Holy Cross Mts, Poland. Mineralogia – Special Papers, 39, 93-94.

Tannenbaum, E., Huizinga, B.J., & Kaplan, I.R. (1986). Role of minerals in thermal alteration of organic matter. II: A material balance. American Association of Petroleum Geologists Bulletin, 70(9), 1156-1165.

Wolkenstein, K., Głuchowski, E., Gross, J.H., & Marynowski, L. (2008). Hypericinoid pigments in Millericrinids from the Lower Kimmeridgian of the Holy Cross Mountains (Poland). Palaios, 23(11), 773-777. DOI: 10.2110/palo.2008.p08-021r.

Xianming, X., Wilkins, R.W.T., Dehan, L., Zufa, L., & Jiamu, F. (2000). Investigation of thermal maturity of Lower Palaeozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance – a Tarim Basin case study. Organic Geochemistry, 31(10), 1041-1052. DOI: 10.1016/S0146-6380(00)00061-9.

Mineralogia

The Journal of Mineralogical Society of Poland

Journal Information


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 114 10
PDF Downloads 48 48 6