Fine and ultrafine TiO2 particles in aerosol in Kraków (Poland)

Open access


During single particle analysis of aerosol in Kraków (Poland) we noticed a new component, that is, aggregates of TiO2 particles. These aggregates are from 0.5 to 4 μm and are composed of individual particles whose size typically varies from between 100 and 350 nm. Smaller particles (below 100 nm) also occur. TiO2 particles are relatively abundant in the summer. The size distribution of the particles corresponds to “pigmentary” TiO2, which indicates that they could be derived from paints and building materials. TiO2 particles were not previously identified in aerosol samples in Kraków, and therefore this phenomenon is likely to be related to the common usage of new building materials and paints. A review of the literature suggests that TiO2 particles, especially within the nanosize range, could result in health and environmental impacts; however, evaluation of the actual threat is difficult.

About Titanium Dioxide, Titanium Dioxide Manufacturers Association. (10.03.2015).

Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., & Nowack, B. (2013). Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environmental Science: Processes & Impacts, 15(12), 2186-2193. DOI: 10.1039/c3em00331k.

Auffan, M., Pedeutour, M., Rose, J., Masion, A., Ziarelli, F., Borschneck, D., Chaneac, C., Botta, C., Chaurand, P., Labille, J., & Bottero J.-Y. (2010). Structural Degradation at the Surface of a TiO2-Based Nanomaterial used in Cosmetics. Environmental Science and Technology, 44, 2689-2694. DOI: 10.1021/es903757q.

Banfield, J. F., & Navrotsky, A. (Eds.), 2001. Nanoparticles and the Environment. Reviews in Mineralogy and Geochemistry, 44, 349p.

Bernhardt, E. S., Colman, B. P., Hochella, M. F., Cardinale, B. J., Nisbet, R. M., Richardson, C. J., & Yin L, (2010). An ecological perspective on nanomaterial impacts in the environment. Journal of Environmental Quality, 39:1-12. DOI:10.2134/jeq2009.0479.

BéruBé, K., Balharry, D., Sexton, K., Koshy, L., & Jones T. (2007). Combustion-derived nanoparticles: mechanisms of pulmonary toxicity. Clinical and Experimental Pharmacology and Physiology, 34, 1044-1050. DOI: 10.1111/j.1440-1681.2007.04733.x.

Bottero, J.-Y., Auffan, M., Rose, J., Mouneyrac, C., Botta, C., Labille, J., Masion, A., Thill, A., & Chaneac C. (2011). Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. Comptes Rendus Geoscience, 343, 168-176. DOI: 10.1016/j.crte.2011.01.001.

Brayner, R. (2008). The toxicological impact of nanoparticles. Nanotoday, 3, 48-55.

Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P. L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management, 29, 2587-2595. DOI: 10.1016/j.wasman.2009.04.001.

Cardinale, B. J., Bier, R., & Kwan C. (2012). Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. Journal of Nanoparticles Research, 14, 913. DOI: 10.1007/s11051-012-0913-6.

Chang, X., Zhang, Yu., Tang, M., & Wang, B. (2013). Health effects of exposure to nano-TiO2: a meta-analysis of experimental studies. Nanoscale Research Letters, 8, 51. DOI: 10.1186/1556-276X-8-51.

Chen, E. Y., Garnica, M., Wang, Y.-C., Mintz, A. J., Chen, C.-S., & Chin, W.-C. (2012). A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Particle and Fibre Toxicology, 9, 2. DOI: 10.1186/1743-8977-9-2.

Chen, W., Qian, C., Liu, X.-Y., & Yu, H.-Q. (2014). Two-Dimensional Correlation Spectroscopic Analysis on the Interaction between Humic Acids and TiO2 Nanoparticles. Environmental Science and Technology, 48, 11119-11126. DOI: 10.1021/es502502n.

Christian, P., von der Kammer, F., Baalousha, M., & Hofmann, Th. (2008). Nanoparticles: structure, properties, preparation and behavior in environmental media. Ecotoxicology, 17, 326-343. DOI: 10.1007/s10646-008-0213-1.

Dawson, N. G. (2008). Sweating the small stuff: Environmental risk and nanotechnology. BioScience, 58, 690. DOI: 10.1641/B580805.

Du, W., Sun, Y., Ji, R., Zhu, J., Wub, J., & Guo, H. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13, 822-828. DOI: 10.1039/c0em00611d.

Dunford, R., Salinaro, A., Cai, L., Serpone, N., Horikoshi, S., Hidaka, H., & Knowland J. (1997). Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Letters 418, 87-90.

Dwivedi, A. D., & Ma, L. Q. (2014). Biocatalytic synthesis pathways, transformation, and toxicity of nanoparticles in the environment. Critical Reviews in Environmental Science and Technology, 44, 1679-1739. DOI: 10.1080/10643389.2013.790747.

Elsaesser, A., & Howard C. V. (2012). Toxicology of nanoparticles. Advanced Drug Delivery Reviews, 64, 129-137. DOI: 10.1016/j.addr.2011.09.001.

Fadeel, B., & Garcia-Bennett, A. E. (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 62, 362-374. DOI: 10.1016/j.addr.2009.11.008.

Fukuhara, N., Suzuki, K., Takeda, K., & Nihei Y. (2008). Characterization of environmental nanoparticles. Applied Surface Science, 255, 1538-1540. DOI: 10.1016/j.apsusc.2008.05.013.

Gázquez, M. J., Bolívar, J. P., Garcia-Tenorio, R., & Vaca, F. (2014). A review of the production cycle of titanium dioxide pigment. Materials Sciences and Applications, 5, 441-458. DOI: 10.4236/msa.2014.57048.

Ge, Y., Schime, l J. P., & Holden, P. A. (2011). Evidence for Negative Effects of TiO2 and ZnO Nanoparticles on Soil Bacterial Communities. Environmental Science and Technology, 45, 1659-1664. DOI: 10.1021/es103040t.

Geiser, M., Stoeger, T., Casaulta, M., Chen, S., Semmler-Behnke, M., Bolle, I., Takenaka, S., Kreyling, W. G., & Schulz, H. (2014). Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. Particle and Fibre Toxicology, 24, 11-19. DOI: 10.1186/1743-8977-11-19.

Göhler, D., Stintz, M., Hillemann L., & Vorbau, M. (2010). Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Annals of Occupational Hygiene, 54(6), 615-624. DOI: 10.1093/annhyg/meq053.

Grassian, V. H., O’Shaughnessy, P., Adamcakova-Dodd, A., Pettibone, J. M., & Thorne, P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental Health Perspectives, 115(3), 397-402. DOI: 10.1289/ehp.9469.

Grupa Azoty, Tytanpol, 2015. (10.03.2015).

Handy, R. D., Owen, R., & Valsami-Jones E. (2008a). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17, 315-325. DOI: 10.1007/s10646-008-0206-0.

Handy, R. D., Henry, T. B., Scown, T. M., Johnston, B. D., & Tyler, C. R. (2008b). Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology, 17, 396-409. DOI: 10.1007/s10646-008-0205-1.

Hawkings, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G., Statham, P. J., Tedstone, A., Nienow, P., Lee, K., & Telling, J. (2013). Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nature Communications, 5 (3929), 1-8. DOI: 10.1038/ncomms4929.

Hochella, M. F. (2008). Nanogeoscience: From origins to cutting-edge applications. Elements, 4(6), 373-379. DOI: 10.2113/gselements.4.6.373.

Hochella, M. F., Lower, S. K., Maurice, P. A., Penn, R. L., Sahai, N., Sparks, D. L., & Twining, B. S. (2008). Nanominerals, mineral manoparticles, and Earth systems. Science, 319, 1631-1635. DOI: 10.1126/science.1141134.

Hu, Y.-L., & Gao, J.-Q. (2010). Potential neurotoxicity of nanoparticles. International Journal of Pharmaceutics, 394, 115-121. DOI: 10.1016/j.ijpharm.2010.04.026.

Hu, X., Chen, Q., Jiang, L., Yu, Z., Jiang, D., & Yin, D. (2011). Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish. Environmental Pollution, 159, 1151-1158. DOI: 10.1016/j.envpol.2011.02.011.

Jabłońska, M. (2003). Skład fazowy pyłów atmosferycznych w wybranych miejscowościach Górnośląskiego Okręgu Przemysłowego [Phase composition of atmospheric dust from selected cities of the Upper Silesia Industrial Region]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, Nr 2151. Katowice: Wydawnictwa Uniwersytetu Śląskiego.

Jabłońska, M. (2013). Wskaźnikowe składniki mineralne w tkance płucnej osób narażonych na pyłowe zanieczyszczenia powietrza w konurbacji katowickiej [Indicative mineral components in lung tissue of persons exposed to aerosol atmospheric contaminations in the Katowice Conurbation]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, Nr 3046. Katowice: Wydawnictwo Uniwersytetu Śląskiego.

Jabłońska, M., Janeczek, J., & Rietmeijer F. J. M. (2003). Seasonal changes in the mineral composition of tropospheric dust in the industrial region of Upper Silesia, Poland. Mineralogical Magazine, 67(6), 1231-1241. DOI: 10.1180/0026461036760161.

Jovanović, B., & Guzmán, H. M. (2014). Effects of titanium dioxide (TiO2) nanoparticles on Caribbean reef-building coral (Montastraea faveolata). Environmental Toxicology and Chemistry, 33, 1346-1353. DOI: 10.1002/etc.2560.

Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M., & Boller, M. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution, 156, 233-239. DOI: 10.1016/j.envpol.2008.08.004.

Karlsson, H. L., Gustafsson, J., Cronholm, P., & Möller, L. (2009). Size-dependent toxicity of metal oxide particles - A comparison between nano- and micrometer size. Toxicology Letters, 188, 112-118. DOI: 10.1016/j.toxlet.2009.03.014.

Kozak, K., Michalik, M., & Wilczyńska-Michalik, W. (1998a). Monitoring drobnozdyspergowanych składników aerozoli atmosferycznych w Krakowie; wyniki badań izotopowych i geochemicznych. Monitoring of fine-dispersed components of the atmospheric aerosols in Kraków; results of isotopic and geochemical studies. Proceedings of the II International Scientific Conference, „Air protection in theory and applications”, Suchecki T. T., Kapała J., Kumazawa, H. (Eds.), Inst. Env. Engineering of the Polish Academy of Sciences, 203-205.

Kozak, K., Michalik, M., & Wilczyńska-Michalik, W. (1998b). Monitoring drobnozdyspergowanych składników aerozoli atmosferycznych w Krakowie; wyniki badań izotopowych i geochemicznych. Proceedings of the II Intern. Scientific Conerence, „Air protection in theory and applications”, Section III. Transformation and transport of pollutants in the atmosphere/troposphere, Suchecki T. T., Zwoździak J., (Eds.), Polska Akademia Nauk, Instytut Podstaw Inżynierii Środowiska, Komitet Inżynierii Środowiska, Prace i Studia, 48, 207-225.

Krug, H. F. (2014). Nanosafety research - are we on the right track? Some thoughts based on a comprehensive literature review. Angewandte Chemie International Edition, 53, 12304-12319. DOI: 10.1002/anie.201403367.

Kumar, P., Robins, A., Vardoulakis, S. & Britter, R. (2010). A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmospheric Environment, 44, 5035-5052. DOI: 10.1016/j.atmosenv.2010.08.016.

Liu, K., Lin, X., & Zhao, J. (2013). Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. International Journal of Nanomedicine, 8, 2509-2520. DOI: 10.2147/IJN.S46919.

Long, T., Saleh, N., Tilton, R., Lowry, G., & Veronesi, B. (2006). Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity. Environmental Science and Technology, 40, 4346-4352. DOI: 10.1021/es060589n.

Manecki A., & Wilczyńska W. (1977). Ocena stanu zanieczyszczenia powietrza atmosferycznego pyłami przemysłowymi. Cz. III. Skład fazowy pyłów atmosferycznych z Krzesławic w Nowej Hucie. [Evaluation of the level of concentration of industrial dusts in the atmosphere. Part III. Mineral composition of dust from Krzesławice in Nowa Huta]. Spraw. z Pos. Kom. Nauk. PAN, Oddz. w Krakowie, 19. [in Polish].

Miller, R. J., Bennett, S., Keller, A. A., Pease, S., & Lenihan, H. S. (2012). TiO2 nanoparticles are phototoxic to marine phytoplankton. Plosone, 7, 1-7. DOI: 10.1371/journal.pone.0030321.

Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A.-J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372-386. DOI: 10.1007/s10646-008-0214-0.

Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 5-22. DOI:10.1016/j.envpol.2007.06.006.

Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H., & ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group, 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2, 8. DOI: 10.1186/1743-8977-2-8.

Samek L. (2009). Chemical characterization of selected metals by X-ray fluorescence method in particulate matter collected in the area of Krakow, Poland. Microchemical Journal, 92, 140-144. DOI: 10.1016/j.microc.2009.02.007.

Samek L. (2012). Source apportionment of the PM10 fraction of particulate matter collected in Krakow, Poland. Nukleonika, 57, 601-606.

Schlich, K., Terytze, K., & Hund-Rinke, K. (2012). Effect of TiO2 nanoparticles in the earthworm reproduction test. Environmental Sciences Europe, 24(5). DOI: 10.1186/2190-4715-24-5.

Shandilya, N., Le Bihan, O., Bressot, C., & Morgeneyer, M. (2014). Evaluation of the Particle Aerosolization from n-TiO2 Photocatalytic Nanocoatings under Abrasion. Journal of Nanomaterials, 2014, 1-11. DOI: 10.1155/2014/185080.

Shandilya, N., Le Bihan, O., Bressot, C., & Morgeneyer, M. (2015). Emission of Titanium Dioxide Nanoparticles from Building Materials to the Environment by Wear and Weather. Environmental Science and Technology, 49, 2163-2170 DOI: 10.1021/es504710p.

Shukla, R. K., Kumar, A., Gurbani, D., Pandey, A. K., Singh S., & Dhawan A. (2013). TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology, 7(1), 48-60. DOI: 10.3109/17435390.2011.629747.

Stoeger, T., Reinhard, C., Takenaka, S., Schroeppel, A., Karg, E., Ritter, B., Heyder, J., & Schulz, H. (2006). Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental Health Perspectives, 114(3), 328-333.

Tucci, P., Porta, G., Agostini, M., Dinsdale, D., Iavicoli, I., Cain, K., Finazzi-Agro, A., Melino, G., & Willis, A. (2013). Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death and Disease, 4, e549. DOI: 10.1038/cddis.2013.76.

Wang, C.-S., Friedlander, S. K., & Mädler, L. (2005). Nanoparticle aerosol science and technology: an overview. China Particuology, 3, 243-254. DOI: 10.1016/S1672-2515(07)60196-1.

Warheit, D. B. (2004). Nanoparticles: health impacts? Materials Today, 7(2), 32-35. DOI: 10.1016/S1369-7021(04)00081-1.

Wilczyńska-Michalik, W., Tyrała, L., Borowiec, W., Damrat, M., Michalik, M. (2010a). Composition and source of aerosols in Kraków (S Poland). 20th General Meeting of the International Mineralogical Association, Budapest, 21-27 August 2010, Acta Mineralogica-Petrographica, Abstract Series, 21-27 August, 2010, 321.

Wilczyńska-Michalik, W., Damrat, M., Tyrała, Ł., Borowiec, W., Michalik, M. (2010b). Single particle analysis of aerosols in Kraków (Poland). Mineralogia, Special Papers, 36, 86.

Wilczyńska-Michalik, W., & Michalik M. (2015). Skład i pochodzenie cząstek pyłów w powietrzu atmosferycznym w Krakowie [Composition and origin of dust particles in atmosphere in Kraków], Aura, 3, 4-8. [in Polish, English summary].

Windler, L., Lorenz, C., von Goetz, N., Hungerbühler, K., Amberg, M., Heuberger, M., & Nowack, B. (2012). Release of Titanium Dioxide from Textiles during Washing. Environmental Science and Technology, 46, 8181-8188. DOI: 10.1021/es301633b.

Worobiec, A., Stefaniak, E.A., Kontozova, V., Samek, L., Karaszkiewicz, P., Van Meel, K., & Van Grieken R. (2006). Characterization ofm individual atmospheric particles within the Royal Museum of the Wawel Castle in Cracow, Poland. e-Preservation Science, 3, 63-68.

Wróbel, A., Rokita, U. E., & Maenhaut, W. (2000). Transport of traffic-related aerosols in urban areas. The Science of the Total Environment, 257, 199-211. DOI: 10.1016/S0048-9697(00)00519-2.

Zhu, X., Zhou, J., & Cai, Z. (2011). TiO2 Nanoparticles in the marine environment: Impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) Embryos. Environmental Science and Technology, 45, 3753-3758. DOI: 10.1021/es103779h.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 9
PDF Downloads 70 70 6