Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex

Open access

Abstract

Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages. Semiquantitative petrogenetic grids for pegmatites in log aNa2SiO5 - log aH2O - log aHF space can be constructed using information on the composition and distribution of minerals in the pegmatites, including the Zr-rich minerals zircon, parakeldyshite, eudialyte, låvenite, wöhlerite, rosenbuschite, hiortdahlite and catapleiite, and the Ti-dominated minerals aenigmatite, zirconolite (polymignite), astrophyllite, lorenzenite, titanite, mosandrite and rinkite. The chemographic analysis indicates that although increasing peralkalinity of the residual magma (given by the activity of the Na2Si2O5 or Nds component) is an important driving force for the miaskitic to agpaitic transition, water, fluoride (HF) and chloride (HCl) activity controls the actual mineral assemblages forming during crystallization of the residual magmas. The most distinctive mineral in the miaskitic pegmatites is zirconolite. At low fluoride activity, parakeldyshite, lorenzenite and wöhlerite are stable in mildly agpaitic systems. High fluorine (or HF) activity favours minerals such as låvenite, hiortdahlite,rosenbuschite and rinkite, and elevated water activity mosandrite and catapleiite. Astrophyllite and aenigmatite are stable over large ranges of Nds activity, at intermediate and low water activities, respectively.

Andersen, T., Erambert, M., Larsen, A.O., & Selbekk, R.S. (2010). Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. Journal of Petrology, 51(11), 2303-2325. DOI: 10.1093/petrology/egq058

Bellezza, M., Merlino, S., & Perchiazzi, N. (2009a). Mosandrite: Structural and crystal-chemical relationships with rinkite. The Canadian Mineralogist, 47, 897-908. DOI: 10.3749/canmin.47.4.897

Bellezza, M., Merlino, S., Perchiazzi, N., & Raade, G. (2009b). “Johnstrupite”: A chemical and structural study. Atti della Società toscana di Science naturali Serie A, 114, 1-3.

Berthelsen, A., Olerud, S., & Sigmond, E.M.O. (1996). Geologisk kart over Norge, bergrunnskart OSLO 1: 250 000. Norges geologiske undersøkelse, Trondheim Berzelius, J. (1824). Undersökning af några Mineralier. 2. Polymignit. Kungliga Svenska Vetenskaps-Akademiens Handlingar, 1824, 338-345.

Brøgger, W.C. (1890). Die Mineralien der Syenitpegmatitgänge der südnorwegischen Augit- und Nephelinsyenite. Zeitschrift für Krystallographie, 16, 1-235 + 1-663.

Christiansen, C.C., Johnsen, O., & Makovicky, E. (2003). Crystal chemistry of the rosenbuschite group. The Canadian Mineralogist, 41, 1203-1224.

Dahlgren, S. (2010). The Larvik Plutonic Complex: The larvikite and nepheline syenite plutons and their pegmatites. In A.O. Larsen (Ed). The Langesundsfjord. History, Geology, Pegmatites, Minerals (pp. 26-37). Salzhemmendorf, Germany: Bode Verlag GmbH,

Dons, J.A., & Jorde, K. (1978). Geologisk kart over Norge, bergrunnskart SKIEN 1: 250 000. Norges geologiske undersøkelse, Trondheim.

Erdmann, A. (1840). Undersøkning av Leukophan, ett nytt mineral från trakten av Brewig i Norige. Kungliga Svenska Vetenskaps-Akademiens Handlingar, 1840, 191-200.

Jarosewich, E. & Boatner, L.A. (1991). Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter, 15, 397-399.

Johnsen, O., Ferraris, G., Gault, R.A., Grice, J.D., Kampf, A.R., & Pekov, I.V. (2003). The nomenclature of eudialyte-group minerals. The Canadian Mineralogist, 41,785-794.

Khomyakov, A.P., (1995). Mineralogy of hyperagpaitic alkaline rocks. Oxford and New York: Clarendon Press, Oxford.

Larsen, A.O. (2010). The Langesundsfjord. History, Geology, Pegmatites, Minerals. Salzhemmendorf, Germany: Bode Verlag GmbH.

Larsen, A.O., Raade, G., & Sæbø, P.C. (1992). Lorenzenite from the Bratthagen nepheline syenite pegmatites, Lågendalen, Oslo Region, Norway. Norsk Geologisk Tidsskrift, 72(4), 381-384.

Larsen, A.O., Åsheim, A., & Gault, R.A. (2005). Minerals of the eudialyte group from the Sagåsen larvikite quarry, Porsgrunn, Norway. Norsk Bergverksmuseets skriftserie, 30, 58-62.

Larsen, B.T., Olaussen, S., Sundvoll, B., & Heeremans, M. (2008). The Permo-Carboniferous Oslo Rift through six stages and 65 million years. Episodes, 31(1), 52-58.

Liestøl, G.B. (1956). Noen petrografiske og mineralogiske undersøkelser omkring pegmatittgangene i Langesundsfjorden. Unpublished MSc thesis, University of Oslo, Oslo, Norway.

Marks, M.A.W., Hettmann, K., Schilling, J., Frost, B.R., & Markl, G. (2011). The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52(3), 439-455. DOI: http://dx.doi.org/10.1093/petrology/egq086

Murad, E. (2006). Mineralogy of aegirine from Låven island, Langesundsfjorden, southern Norway. Norwegian Journal of Geology, 86, 435-438.

Neumann, E.-R. (1976). Compositional relations among pyroxenes, amphiboles and other mafic phases in the Oslo Region plutonic rocks. Lithos 9(2), 85-109. DOI: http://dx.doi.org/10.1016/0024-4937(76)90028-1

Neumann, E.-R. (1980). Petrogenesis of the Oslo Region larvikites and associated rocks. Journal of Petrology, 21, 498-531.

Neumann, E.-R., Wilson, M., Heeremans, M., Spencer, E.A., Obst, K., Timmerman, M.J., & Kirstein, L. (2004). Carboniferous-Permian rifting and magmatism in southern Scandinavia and northern Germany: a review. In M.Wilson, E. R. Neumann, G. R. Davies, M.J. Timmerman, M. Heeremans & Larsen, B.T. (Eds). Permo- Carboniferous Magmatism and Rifting in Europe (pp. 11-40). Geological Society, London, Special Publications, 223. DOI: 10.1144/GSL.SP.2004.223.01.02

Oftedahl, C., & Petersen, J.S.,1978. Southern part of the Oslo Rift. Norges geologiske undersøkelse Bulletin, 337, 163-182.

Petersen, J.S. (1978). Structure of the larvikite-lardalite complex, Oslo Region, Norway, and its evolution. Geologisches Rundschau, 67(1), 330-342.

Pfaff, K., Wenzel, T., Schilling, J., Marks, M.A.W, & Markl, G. (2010). A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jarhbuch fur Mineralogie, Abhandlungen, 187(1), 69-81. DOI: 10.1127/0077-7757/2010/0166

Piilonen, P., Lalonde, A.E., McDonald, A.M., Gault, R.A., & Larsen, A.O. (2003). Insights into astrophyllitegroup minerals. I. Nomenclature, Composition and development of a standardized general formula. The Canadian Mineralogist, 41, 1-26. DOI: 10.2113/gscanmin.41.1.1

Pouchou, J.L., & Pichoir, F. (1984). A new model for quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale, 3, 13-38.

Raade, G., & Mladeck, M.H. (1977). Parakeldyshite from Norway. The Canadian Mineralogist, 15, 102-107.

Raade, G., & Mladeck, M.H., (1983). Janhaugite, Na3Mn3Ti2Si4O15(OH,F,O)3, a new mineral from Norway. American Mineralogist, 68, 1216-1219.

Sahama, T.G., (1978). The Nyiragongo main cone. Musée Royale de l’Afrique Centrale. Annales Scieces Géologique Série in-8, 81, 1-88.

Salvi, S., & Williams-Jones A.E. (1995). Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec-Labrador, Canada. American Mineralogist, 80, 1031-1040.

Sokolova, E. (2006). From structure topology chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 1273-1330. DOI: 10.2113/gscanmin.44.6.1273

Sokolova, E., & Cámara, F. (2008). From structure topology to chemical composition.VIII. Titanium silicates: the crystal chemistry of mosandrite from type locality of Låven (Skådön), Langesundsfjorden, Larvik, Vestfold, Norway. Mineralogical Magazine, 72(4), 887-897. DOI: 10.1180/minmag.2008.072.4.887

Strunz, H., & Nickel, E.H. (2001). Strunz mineralogical tables. 9th Edition. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung (Nägle u. Obermiller).

Sæbø, P.C.1966. The first occurrence of the rare mineral barylite, Be2BaSi2O7, in Norway. Norsk Geologisk Tidsskrift, 46, 335-348.

Sørensen, H., (1997). The agpaitic rocks - an overview. Mineralogical Magazine, 61(4), 485-498.

Ussing, N.V. (1912). Geology of the country around Julianehaab, Greenland. Meddelelser om Grønland, 38, 1-376

Weibye, P.H. (1850). Neue Mineralien aus Norwegen, beschrieben von P.H. Weibye; analysiert von N.J. Berlin, K.A. Sjögren und J.B. von Borck (Erster Theil). Annalen der Physik und Chemie, 79, 299-304.

Mineralogia

The Journal of Mineralogical Society of Poland

Journal Information


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 187 42
PDF Downloads 63 63 10