Characterization of barren, granitic soils from the Nubian Desert (SW Egypt) by 57Fe Mössbauer spectroscopy

Open access

Abstract

57Fe Mössbauer spectroscopy - a versatile technique involving the recoil-free, resonant absorption and emission of nuclear gamma (γ) rays by the iron-57 isotope in natural iron in solids - has been used to provide quantitative information about the mineral host, occupation sites and oxidation states of iron atoms in geological samples. This technique has been applied to the bulk chemistry of a barren soil (Soil A) derived from an aluminous-type granite and another barren soil (Soil B) derived from a sodic-type granite located ~ 100 kilometers apart in the Nubian Deseit in the currently hyper arid south-west of Egypt and which exhibit distinct chemical and mineral differences. The analyses indicate different mineral hosts for the iron in these samples, namely, vermiculite-chlorite plus some hematite in Soil A and hematite and goethite plus minor aegirines in Soil B. Each soil has distinct intensities of oxidized iron (89% for Soil A and 100% for Soil B) and these differences reflect changes in soil sources and processes.

Amarasiriwardena, D. D., DeGrave, E., Bowen, L. H., Weed, S.B. (1986). Quantitative determination of aluminum-substituted goethite-hematite mixtures by Mössbauer Spectroscopy. Clays and Clay Minerals, 34(3), 250-256.

Badreddine, R., Grandjean, F., Vandormael, D., Fransolet, A.M., & Long, G.J. (2000). An 57Fe Mössbauer spectral study of vermiculitization in the Palabora Complex, Republic of South Africa. Clay Minerals, 35(4), 653-663. DOI: 10.1180/000985500547115.

Badreddine, R., Vandormael, D., Fransolet, A.M., Long, G.J., Stone, W.E.E., & Grandjean, F. (2002).

A comparative X-ray diffraction, Mössbauer and NMR spectroscopic study of the vermiculites from Béni Bousera, Morocco and Palabora, Republic of South Africa. Clay Minerals, 37, 367-376. DOI: 10.1180/0009855023720040.

Cornell, R.M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH. DOI: 10.1002/3527602097.

Egyptian Geological Survey and Mining Authority (1981). Geological map of Egypt, scale 1:2,000,000. Abbasyia, Cairo, Egypt: Geological Survey and Mining Authority.

Gunnlaugsson, H.P. (2006). A simple model to extract hyperfine interaction distributions from Mössbauer spectra, Hyperfine Interactions, 167, 851-854. DOI: 10.1007/s10751-006-9380-8

Hassan, K.M (2005). Geochemical assessment of radioactive lava pockets in El-Seboah granite, Toshki area, south Western Desert. Annales of the Geological Survey of Egypt and Mining Authority, 28, 195-204.

Hassan, K.M. (2008). Petrography, chemistry and radioactivity of granitoids at north Gebel Seri, south Western Desert, Egypt. Isotope and Radiation Research, 40(3), 615-629.

Hassan, K.M. (2009). Characterization of granites by 57Fe Mössbauer spectroscopy. Mineralogia, 40(1-4), 95-106. DOI:10.2478/v10002-009-0008-x.

Hassan, K.M. (2010). Valences and site characteristics of iron in radioactive magmatic veins (Egypt): A Mössbauer and chemical study. Mineralogia, 41(1-2), 23-33. DOI: 10.2478/v10002-010-0003-2.

Harward, M.E, Carstea, D.D., & Sayegh, A.H. (1969). Properties of vermiculites and smectites: Expansion and collapse. Clays and Clay Minerals, 16, 437-447.

Kündig, W., Bömmel, H., Constabaris, G., & Lindquist, R.H. (1966). Some properties of supported small -Fe2O3 particles determined with the Mössbauer effect, Physical Review, 142(2), 327-333.

List, F.K., El-Gaby, S., & Tehrni, R. (1989). The basement rocks in the Eastern and Western Deserts and Sinai. In M. Hermina, E., Klitzsch & S. List (Eds.). Stratigraphic lexicon and explanatory note to the geologic map of Egypt 1:500000 (pp. 33-56). Cairo, Egypt: Egyptian General Petroleum Corporation.

Mørup, S., Madson, B.M., Frank, J., Villadsen, J., & Kock, C.J.W. (1983). A new interpretation of Mössbauer spectra of microcrystalline goethites: "supper-ferromagnetism" or "supper-spin-glass" behavior. Journal of Magnetism and Magnetic Materials, 40, 163-174.

Nørnberg, P., Schwertmann, U., Stanjek, H., Andersen, T., & Gunnlaugsson, H. P., (2004). Mineralogy of a burned soil compared with four anomalously red Quaternary deposits in Denmark. Clay Minerals, 39(1), 85-98. DOI: 10.1180/0009855043910122.

Sabet, A.H. (1972). On the stratigraphy of basement rocks of Egypt. Annals of the Geological Survey of Egypt, 2, 79-102.

Talyor, G.L., Routsala, A.P., & Keeling, Jr., R.O. (1968). Analysis of iron in layer silicates by Mössbauer spectroscopy. Clay Minerals, 16(5), 381-391.

Vandenberghe, R.E., De Grave, E., De Geyter, G. & Landuydde, C. (1986). Characterization of goethite and hematite in a Tunisian soil profile by Mössbauer spectroscopy. Clays and Clay Minerals, 34(3), 275-280.

Vandenberghe, R.E., De Grave, E., Hus, J.J., & Han, J. (1992). Characterization of Chinese loess and associated paleosol by Mössbauer spectroscopy, Hyperfine Interactions, 70, 977-980.

Vandenberghe, R.E., Hus, J.J., & De Grave, E. (1998). Evidence from Mössbauer spectroscopy of neo-formation of magnetite/maghemite in the soils of loess/paleosol sequences in China, Hyperfine Interactions, 117, 359-369.

Vendelboe, A.L., Gunnlaugsson, H. P., Helgason, Ö., & Nørnberg, P. (2005). Characterization of burned soil profiles by Mössbauer spectroscopy. Hyperfine Interactions, 166, 517-522. DOI: 10.1007/s10751-006-9319-0.

Mineralogia

The Journal of Mineralogical Society of Poland

Journal Information


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 166 10
PDF Downloads 44 44 5