Synthesis and solubility of brompyromorphite Pb5(PO4)3Br

Open access


The bromide analogue of pyromorphite Pb5(PO4)3Br was synthesized and characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. The solubility of the brompyromorphite was measured at 25°C and pH values of 2.0, 2.6 and 3.2. For the 3 pH measurements, the average solubility product, log KSP, for the reaction Pb5(PO4)3Br ⇔ 5Pb2+ + 3PO- 3- + Br- at 25ºC is -77.38 ± 0.70. The free energy of formation, ΔG°f,298, calculated from this measured solubility product is -3724.7 ± 4.3 kJ mol−1. These results confirm that brompyromorphite is more soluble than pyromorphite.

Allison, J.D., Brown, D.S., & Novo-Gradac, K.J. (1991). MINTEQA2/PRODEFA2, a geochemical assessmentmodel for environmental systems: version 3.0 user’s manual, EPA/600/3-91/021, Athens, GA: US Environmental Protection Agency, Environmental Research Laboratory.

Cotter-Howells, J. (1996). Lead phosphate formation in soils. Environmental Pollution, 93(1), 9-16. DOI: 10.1016/0269-7491(96)00020-6.

Figuła, A., & Bajda, T. (2010). Formation of brom-pyromorphite as the effect of lead and phosphates sorption on surfactant-modified smectite. IMA2010: 20th general meeting of the International Mineralogical Association, 21-27 August 2010. Budapest, Hungary. Acta Mineralogica-Petrographica, Abstract Series, 6, 399.

Flis, J., Manecki, M., & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl− mimeite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta, 75(7), 1858-1868. DOI: 10.1016/j.gca.2011.01.021.

Krik, G., Scheckel, K.G., & Ryan, J.A. (2002). Effects of Aging and pH on Dissolution Kinetics and Stability of Chloropyromorphite. Environmental Science and Technology, 36(10), 2198-2204. DOI: 10.1021/es015803g.

Lenoble, V., Deluchat, V., Serpaud, B., & Bollinger, J.C. (2003). Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta, 61(3), 267-276. DOI: 10.1016/S0039-9140(03)00274-1.

Nakamoto, A., Urasima, Y., Sugiura, S., Nakano, H., Yachi, T., & Tadokoro, K. (1969). Pyromorphite-mimetite minerals from the Otaru-Matsukura barite mine in Hokkaido, Japan. Mineralogical Journal, 6(1-2), 85-101.

Nriagu, J.O. (1973). Lead orthophosphates. III: Stabilities of fluorpyromorphite and bromopyromorphite. Geochimica et Cosmochimica Acta, 37(7), 1735-1743. DOI: 10.1016/0016-7037(73)90159-2.

Pan, Y., & Fleet M.E. (2002). Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. In M.J. Kohn, J. Rakovan & J.M. Hughes (Eds.), Phosphates: geochemical,geobiological, and materials importance (pp. 13-49). Washington, D.C.: Mineralogical Society of America.

Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., & White, T.J. (2010). Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163-179.

Robie, R.A., Hemingway, B.S., & Fisher, J.R. (1978). Thermodynamic Properties of Minerals and RelatedSubstances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, U.S. Geological Survey Bulletin 1452, Washington.

Shevade, A.V., Erickson, L., Pierzynski, G., & Jiang, S. (2001). Formation and stability of substituted pyromorphites: A molecular modeling study. Journal of Hazardous Substance Research, 3(2), 1-12.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 120 6
PDF Downloads 34 34 3