Trace element geochemistry of coals from the Southern Cantabrian Zone (NW Spain): preliminary results

Open access

Trace element geochemistry of coals from the Southern Cantabrian Zone (NW Spain): preliminary results

Bituminous to anthracite coals from three small Stephanian intramontane coal-bearing basins (La Magdalena, Cinera-Matallana and Sabero) located along the Sabero-Gordón fault line strike-slip systems of the Southern Cantabrian Zone (SCZ) were examined. Coal rank expressed as mean vitrinite reflectance values of these Stephanian coals is in the range 0.72-3.96%. The vitrinite maceral group exceeds 72 vol. % in all of the coals. The coals are characterized by relatively variable contents of mineral matter and coal-ash. The mineral matter comprises, in the main, clay minerals, carbonates, sulphides and quartz. The coals exhibit medium-high concentrations (see for comparison Ronov et al. 1990; Kabata-Pendias, Pendias 1999; Ketris, Yudovich 2009) of the following elements (in ppm): ΣREE (53-205), Ba (300-900), As (11-57), Zn (<50-150), Cr (10-160), Rb (50-145), Co (5-26), Sc (2-24.6), Ce (17-99), Yb (1.3-4.5), Th (2.4-11.9) and U (1.1-8.1), Br (<1-14), Cs (<2-9), Eu (<0,3-1.5), Lu (0.11-0.85) and Sb (0.8-4.8), and relatively low concentrations of Sm (0.6-6.6) and Ta (<1-2). They are also characterised by relatively high Th/U values (1.31-2.29). LREE/HREE values fall in the range 24-44 (average - 30). In contrast, concentrations of Au, Ag, Hg, Ir, Ni, Se, Sn, Sr, and W are below detection limits for the applied INAA method. As the concentrations of elements are significantly higher in coal-ash, most are likely related to mineral matter in the coals.

  • Aller, J., Valin, M.L., Garcia-Lopez, S., Brime, C., & Bastida, F. (2005). Superposition of tectono-thermal episodes in the southern Cantabrian Zone (foreland thrust and fold belt of the Iberian Variscides, NW Spain. Bulletin de la Societe Geologique de France, 176(6), 487-497.

  • Bastida, A. F, Brime, C., Garcia-Lopez, S., & Sarmiento, G.N. (1999). Tectono-thermal evolution in a region with thin-skinned tectonics; the western nappes in the Cantabrian Zone (NW Spain). International Journal of Earth Sciences, 88(1), 38-48.

  • Botor, D. (2005). Geochemistry of the Upper Carboniferous tonsteins from the Sabero coalfield (NW Spain). Zeszyty Naukowe Politechniki Śląskiej, Seria Górnictwo 268, 19-30.

  • Botor, D. (2009). Paleogeothermal evolution of the Sabero Coalfield. Report of grant the Polish Ministry of Science and Higher Education, no. 2307/T02/2007/32 (in Polish).

  • Brime, C., Garcia-Lopez, S., Bastida, F., Valin, M. L., Sanz-Lopez, J., & Aller, J. (2001). Transition from diagenesis to metamorphism near the front of the Variscan regional metamorphism (Cantabrian Zone, NW Spain). Journal of Geology, 109(3), 363-379.

  • Cohen, A.D., Spackman, W., & Dolsen, P. (1984). Occurrence of trace elements in peat-forming environments of southern Florida. International Journal of Coal Geology, 4(1), 73-96.

  • Colmenero, J.R., & Prado, J.G. (1993). Coal basins in the Cantabrian Mountains, NW Spain. International Journal of Coal Geology, 23(1-4), 215-229.

  • Colmenero, J.R., Suárez-Ruiz, I., Fernández-Suárez, J., Barba, P., & Llorens, T. (2008). Genesis and rank coal basins in the Cantabrian Mountains, NW Spain. International Journal of Coal Geology 76(3), 187-204.

  • Dai, S., Li, D., Ren, D., Tang, Y., Shao, L., & Song, H. (2004). Geochemistry of the Late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low-temperature hydrothermal fluid. Applied Geochemistry, 19(8), 1315-1330.

  • Finkelman, R.B. (1995). Modes of occurrence of environmentally-sensitive trace elements in coal. In D. J. Swaine & F. Goodarzi (Eds.), Environmental Aspects of Trace Elements of Coal (pp. 24-50). Dordrecht: Kluwer Academic Publishers.

  • Frings, U., Lutz, R., De Wall, H., & Warr, L.N. (2004). Coalification history of the Cinera-Matallana pull-apart basin (NW Spain). International Journal of Earth Sciences, 93(1), 92-106.

  • Gassparini, M., Bechstädt T., & Boni M. (2006). Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Marine and Petroleum Geology, 23(5), 543-568.

  • Gómez-Fernández, F., Both, R.A., Mangas, J. & Arribas, A. (2000). Metallogenensis of Zn-Pb Carbonate-Hosted mineralisation in the southeastern region of the Picos de Europa (Central Northern Spain) Province: geologic, fluid inclusion and stable isotope studies. Economic Geology, 95(1), 19-40.

  • Heward, A.P. (1978). Alluvial fan and lacustrine sediments from the Stephanian A and B (La Magdalena, Cinera-Matallana and Sabero) coalfields, northern Spain. Sedimentology, 25(4), 451-488.

  • Heward, A.P., & Reading, H.G. (1980). Deposits associated with a Hercynian to Late Hercynian continental strike-slip system, Cantabrian Mountains, Northern Spain. In: P. F. Ballance & H. G. Reading (Eds.), Sedimentation in Oblique-Slip Mobile Zones (pp. 105-125). Special Publication of the International Association of Sedimentologists, 4. Wiley.

  • International Organization for Standardization. (1994). Methods for the Petrographic Analysis of Bituminous Coal and Anthracite - Part 5: Methods Determining Microscopically the Reflectance of Vitrinite. ISO 7404-5 - 1994, Geneva, Switzerland.

  • Kabata-Pendias, A., & Pendias, H. (1999). Biogeochemistry of Trace Elements. Warsaw: Wydawnictwo Naukowe PWN.

  • Ketris, M.P., & Yudovich, Y.E. (2009). Estimations of clarkes for carbonaceous bioliths: world averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2), 135-148.

  • Knight, J.A. (1983). The Stratigraphy of the Stephanian Rocks of the Sabero Coalfield, Léon (NW. Spain) and an investigation of the fossil flora. Part I: The stratigraphy and general geology of the Sabero Coalfield Paleontographica, Abt. B, 187(1-3), 1-88.

  • Knight, J.A., Burger, K, & Bieg, G. (2000). The pyroclastic tonsteins of the Sabero Coalfield, north-western Spain, and their relationship to the stratigraphy and structural geology. International Journal of Coal Geology, 44(3-4), 187-226.

  • Marcos, A., & Pulgar, J. A. (1982). An approach to the tectonostratigraphic evolution in the Cantabrian Foreland thrust and fold belt, Hercynian Cordillera of NW Spain. Neues Jahrbuch Geologie und Paläontologie, 163(2), 256-260.

  • Pérez-Estaún, A., Bastida, F., Alonso, J.L., Marquinez, J., Aller, J., Alvarez-Marrón, J., Marcos, A., & Pulgar, J. A. (1988). A thin-skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics, 7(3), 517-537.

  • Polski Komitet Normalizacyjny (National Standards Authority in Poland). (2001). Paliwa stałe - Oznaczanie zawartości siarki całkowitej i popiołowej automatycznymi analizatorami. PN-G-04584, ISBN 83-236-6958-9, 1-5. Warszawa.

  • Polski Komitet Normalizacyjny (National Standards Authority in Poland). (2002). Paliwa stałe - Oznaczanie popiołu. PN-ISO 1171, ISBN 83-236-8847-8, 7. Warszawa.

  • Polski Komitet Normalizacyjny (National Standards Authority in Poland). (2007). Klasyfikacja węgla. PN-ISO 11760-2007. ISBN 978-83-251-2358-1, 16.

  • Querol, X., Juan, R., Lopez-Soler A., Fernandez-Turiel J.L., & Ruiz C. R. (1996). Mobility of trace elements from coal and combustion wastes. Fuel, 75(7), 821-838.

  • Ronov, A.B., Yaroshevsky, A.A., & Migdisov, A.A. (1990). Chemical Composition of the Earth's Crust and Geochemical Balance of Main Elements. Moscow: Nauka, Science Pub. House. (in Russian).

  • Swaine, D.J. (1995). The contents and some related aspects of trace elements in coals. In D.J. Swaine & F. Goodarzi (Eds.), Environmental Aspects of Trace Elements in Coal (pp. 5-23). Dordrecht: Kluwer Academic Publishers.

  • Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., & Robert, P. (1998). Organic Petrology. Berlin-Stuttgart: Gebrüder Borntraeger.

  • Valcovic, V. (1983). Trace Elements in Coal. Boca Raton, Florida: CRC Press Inc.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 15
PDF Downloads 4 4 3