Luminescence properties of Ce3+ and Eu2+ in fluorites and apatites

Open access

Luminescence properties of Ce3+ and Eu2+ in fluorites and apatites

Natural samples of fluorite and apatite from granites, pegmatites, carbonatites and andesitic tuffs were investigated by steady-time spectroscopy to characterize the luminescence properties of Ce3+ and Eu2+. The luminescence of Ce3+ has been clearly seen in fluorite as 320 and 337 or 343 nm bands. In apatites, two distinct bands for two different Ca crystal sites were obtained: 340-380 nm for Ca(1) and 420-450 nm for Ca(2). The luminescence spectra of Eu2+ in the fluorite crystals were measured even at for low concentration of this element (0.11 ppm). For Ce3+, it has been showed that the crystal field strength depends more on the nature of the ligand than on the Me-ligand distances.

Aierken S., Lee K.-H., Kusachi I., & Yamashita N. (2000). Photoluminescence properties of natural fluorite. Journal of Mineralogical and Petrological Sciences, 95(8), 228-235.

Aierken S., Kusachi I., & Yamashita N. (2003). Natural fluorite emitting yellow fluorescence under UV light. Physics and Chemistry of Minerals, 30(8), 478-485. DOI: 10.1007/s00269-003-0341-3.

Caldino U. G., Dela Cruz C., Muhoz G., & Rubio J. O. (1989). Ce3+ - > Eu2+ energy transfer in CaF2. Solid State Communications, 69 (4), 347-351. DOI: 10.1016/0038-1098(89)90685-6.

Fleet M. E., & Pan Y. (1997). Site preference of rare elements in fluorapatite: Binary (LREE+HREE) - substituted crystals. American Mineralogist, 82(9-10), 870-877.

Gaft M., Reisfeld R., Panczer G., Blank PH., & Boulon G. (1998). Laser-induced time-resolved luminescence of minerals. Spectrochimica Acta Part A, 54(13), 2163-2175. DOI: 10.1016/S1386-1425(98)00134-6.

Gaft M., Panczer G., Reisfeld R., & Uspersky E. (2001a). Laser induced time-resolved luminescence as a tool for rare-earth element identification in minerals. Physics and Chemistry of Minerals, 28(5), 343-363. DOI 10.1007/s002690100163.

Gaft M., Panczer G., Reisfeld R., Ioffe O., & Sigali I. (2001b). Laser induced time-resolved luminescence as a means for discrimination of oxidation states of Eu in minerals. Journal of Alloys and Compounds, 323-324, 842-846. DOI: 10.1016/S0925-8388(01)01157-4.

Gaft M., Reisfeld R., & Panczer G. (2005). Luminescence Spectroscopy of Minerals and Materials. Berlin: Springer-Verlag.

Mazurak Z., Ratuszna A., & Daniel Ph. (1999). Luminescence properties of Pr3+ and Ce3+ in KCaF3 single crystals. Journal of Luminescence, 82(2), 163-171. DOI: 10.1016/S0022-2313(99)00028-9.

Ratuszna A., Rousseau M., & Daniel Ph. (1997). Crystal structure of KCaF3 determined by Rietveld profile method. Powder Diffraction, 12(2), 70-76.

Reisfeld R., Gaft M., Boulon G., Panczer G., & Jorgensen C. K. (1996). Laser-induced luminescence of rare-earth elements in natural fluor-apatites. Journal of Luminescence, 69(5-6), 343-353. DOI: 10.1016/S0022-2313(96)00114-7

Waychunas G. A. (2002). Apatite luminescence. Reviews in Mineralogy and Geochemistry, 48(1), 701-742. DOI: 10.2138/rmg.2002.48.19.

Weber J. M., & Bierig R. W. (1964). Paramagnetic Resonance and Relaxation of Trivalent Rare-Earth Ions in Calcium Fluoride. I. Resonance Spectra and Crystal Fields. Physical Review, 134(6A), A1492-A1503. DOI: 10.1103/PhysRev.134.A1492.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 173 19
PDF Downloads 90 90 12