Lichenometry and Schmidt hammer tests in the Kaunertal glacier foreland (Ötztal Alps) during the AMADEE-15 Mars Mission Simulation

Open access

Abstract

The aim of this article is to show the results of the lichenometrical and Schmidt hammer measurements performed in 2015 during the AMADEE-15 Mars Mission Simulation in the Ötztal Alps in order to test the capabilities of analogue astronauts and collect information on the geomorphic history of the study area since the Little Ice Age (LIA). The results obtained differ significantly from our expectations, which we attribute to differences in the field experience of participants and the astronauts’ technical limitations in terms of mobility. However, the experiments proved that these methods are within the range of the astronauts’ capabilities. Environmental factors, such as i) varied petrography, ii) varied number of thalli in test polygons, and iii) differences in topoclimatic conditions between the LIA moraine and the glacier front, further inhibited simple interpretation. The LIA maximum of the Kaunertal glacier occurred in AD 1850, and relative stabilization of the frontal part of the rock glacier occurred in AD 1711.

Alpine Permafrost Index Map (APIM) 2016. Available from: . [16 December 2016].

Armstrong, RA 2006, ‘Seasonal growth of the crustose lichen Rhizocarpon geographicum (L.) DC. in South Gwynedd, Wales’, Symbiosis, vol. 41, no. 2, pp. 97‑102.

Armstrong, RA 2016, ‘Lichenometric dating (lichenometry) and the biology of the lichen genus Rhizocarpon: challenges and future directions’, Geografiska Annaler, vol. 98(A), no. 3, pp.183-206. DOI: 10.1111/geoa.12130.

Benedict, JB 1988, ‘Techniques in lichenometry: identifying the yellow Rhizocarpons’, Arctic and Alpine Research, vol. 20, pp. 285-291.

Beschel, RE 1954, ‘Eine Flechte als Niederschlagsmesser’, Wetter and Leven, vol. 6‑7, pp. 56‑60.

Boeckli, L, Brenning, A, Gruber, S & Noetzli, J 2012, ‘Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics’, The Cryosphere, vol. 6, pp. 807-820. DOI: 10.5194/tc-6-807-2012.

Bradwell, T 2009, ‘Lichenometric dating: a commentary, in the light of some recent statistical studies’, Geografiska Annaler, vol. 91(A), no. 2, pp. 61-69. DOI: 10.1111/j.1468-0459.2009.00354.x.

Bradwell, T & Armstrong, RA 2006, ‘Growth rates of Rhizocarpon geographicum lichens: a review with new data from Iceland’, Journal of Quaternary Science, vol. 22, no. 4, pp. 311-320. DOI: 10.1002/jqs.1058.

Brandt, A, de Vera, JP, Onofri, S & Ott, S 2015, ‘Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS’, International Journal of Astrobiology, vol 14, no. 3, pp. 411‑425. DOI: https://doi.org/10.1017/S1473550414000214.

Burga, CA, Frauenfelder, R, Ruffet, J, Hoelzle, M & Kääb, A 2004, ‘Vegetation on Alpine rock glacier surfaces: a contribution to abundance and dynamics on extreme plant habitats’, Flora, vol. 199, pp. 505-515.

Day, MJ & Goudie, AS 1977, ‘Field assessment of rock hardness using the Schmidt test hammer’, British Geomorphological Research Group Technical Bulletin, vol. 18, pp. 19‑29.

Dąbski, M 2007, ‘Testing the size-frequency-based lichenometric dating curve on Fláajökull moraines (SE Iceland) and quantifying lichen population dynamics with respect to stone surface aspect’, Jökull, vol. 57, pp. 21‑35.

Dąbski, M 2009, ‘Early stages of weathering of glacially-abraded limestone surfaces as determined by various Schmidt hammer tests; Biferten glacier forefield, Glarner Alps (Switzerland)’, Landform Analysis, vol. 11, pp. 13‑18.

Dąbski, M 2014, ‘Rock surface micro−roughness, Schmidt hammer rebound and weathering rind thickness within LIA Skálafellsjökull foreland, SE Iceland’, Polish Polar Research, vol. 35, no. 1, pp. 99‑114. DOI: 10.2478/popore−2014−0008.

Dąbski, M 2015, ‘Application of the Handysurf E-35B electronic profilometer for the study of weathering micro-relief in glacier forelands in SE Iceland’, Acta Geologica Polonica, vol. 65, no. 3, pp. 389-401. DOI: 10.1515/agp-2015-0018.

Dąbski, M & Tittenbrun, A 2013, ‘Time-dependant surface deterioration of glacially abraded basaltic boulders deposited by Fláajökull, SE Iceland’, Jökull, vol. 63, pp. 55‑70.

Evans, DJA, Archer, S & Wilson, DJH 1999, ‘A comparison of the lichenometric and Schmidt hammer dating techniques based on data from the proglacial areas of some Icelandic glaciers’, Quaternary Science Reviews, vol. 18, pp. 13-41. DOI: 10.1016/S0277-3791(98)00098-5.

Glacier and Permafrost Hazards in Mountains (GAPHAZ) 2017. Available from: . [20 June 2017].

Goudie, AS 2006, ‘The Schmidt Hammer in geomorphological research’, Progress in Physical Geography, vol. 30, no. 6, pp. 703-718. DOI: 10.1177/0309133306071954.

Groemer, G 2015, AMADEE-15 Mission Report, Available from: . [12 December 2016].

Groemer, G, Losiak, A, Soucek, A, Plank, C, Zanardinia, L, Sejkora, N & Sams, S 2016, ‘The AMADEE-15 Mars simulation’, Acta Astronautica, vol. 129, pp. 277-290. DOI: https://doi.org/10.1016/j.actaastro.2016.09.022.

Grove, JM 1990, Little Ice Ages, Routledge, London. Gruber, S, Hoelzle, M & Haeberli, W 2004, ‘Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003’, Geophysical Research Letters, vol. 31, L13504. DOI: 10.1029/2004GL020051.

Haines-Young, RH 1983, ‘Size variation of Rhizocarpon on Moraine Slopes in Southern Norway’, Arctic and Alpine Research, vol 15, no 3, pp. 295‑305.

Heckmann, A, Hilger, L, Vehling, L & Becht, M 2016, ‘Integrating field measurements, a geomorphological map and stochastic modelling to estimate the spatially distributed rockfall sediment budget of the Upper Kaunertal, Austrian Central Alps’, Geomorphology, vol. 260, pp. 16-31. DOI: https://doi.org/10.1016/j.geomorph.2015.07.003.

Hubbard, B & Glasser, N 2005, Field Techniques in Glaciology and Glacial Geomorphology. John Wiley & Sons, Chichester.

Huber, VM, Bugmann, HKM & Reasoner, MA (eds.) 2005, Global Change and Mountain Regions. An Overview of Current Knowledge. Springer, Dordrecht.

Institute of Meteorology and Geophysics 2013, Climate Data Vent, Ötztal Alps, 1935-2011, University of Innsbruck. DOI: 10.1594/PANGAEA.806582.

Ivy-Ochs, S, Kerschner, H, Maisch, M, Christl, M, Kubik, PW & Schluchter, C 2009, ‘Latest Pleistocene and Holocene glacier variations in the European Alps’, Quaternary Science Reviews, vol. 28, no. 21‑22, pp. 2137-2149. DOI: 10.1016/j.quascirev.2009.03.009.

Kędzia, S 2015, ‘Lichenometric curves for the PoliSHRT part of the Karkonosze and Tatra Mountains establiSHRTed with a new method’, Zeitschrift fürGeomorphologie, vol. 59, no. 1, pp. 103‑118. DOI: 10.1127/0372-8854/2014/0141.

Krainer, K & Mostler, W 2006, ‘Flow velocities of active rock glaciers in the Austrian Alps’, Geografiska Annaler, vol. 88(A), no. 4, pp. 267-280. DOI: 10.1111/j.0435-3676.2006.00300.x.

Krainer, K & Ribis, M 2012, ‘A rock glacier inventory of Tyrolean Alps (Austria)’, Austrian Journal of Earth Sciences, vol. 105, no. 2, pp. 32‑47.

Mars Fact Sheet (n.d.), Mars/Earth Comparison 2017. Available from: . [19 June 2017].

Matthews, JA & Owen, G 2008, ‘Endolithic lichens, rapid biological weathering and Schmidt hammer R−values on recently exposed rock surfaces: Storbreen glacier foreland, Jotunheimen, Norway’, Geografiska Annaler, vol. 90(A), no. 4, pp. 287-297. DOI: 10.1111/j.1468-0459.2008.00346.x.

McCann, T 2008, Geology of Central Europe, Geological Society of London, London.

Nicolussi, K 1990, ‘Bilddokumente zur Gleschichte des Vernagtfermers im 17. Jahrhundert’, Zeitschrift für Gletscherkunde und Glazialgeologie, vol. 26, pp. 97‑119.

Pfiffner, OA 2010. Geologie der Alpen. 2nd ed. Geologie of UTB. Haupt, Bern.

Poelt, J 1988, ‘Rhizocarpon Ram. em. Th. Fr. Subgen. Rhizocarpon in Europe’, Arctic and Alpine Research, vol. 20, no. 3, pp. 292‑298.

Runkiewicz, L & Brunarski, L 1977, ‘Instrukcja stosowania młodków Schmidta do nieniszczącej kontroli jakości betonu w konstrukcji, nr 210’, Instytut techniki Budowlanej, Warszawa.

Sanders, D & Ostermann, M 2011, ‘Post-last glacial alluvial fan and talus slope associations (Northern Calcareous Alps, Austria): A proxy for Late Pleistocene to Holocene climate change’, Geomorphology, vol. 131, no. 3‑4, pp. 85-97. DOI: 10.1016/j.geomorph.2011.04.029.

Sass, O 2005, ‘Temporal variability of rockfall in the Bavarian Alps, Germany’, Arctic, Antarctic and Alpine Research, vol. 37, no. 4, pp. 564-573. DOI: 10.1657/1523-0430(2005)037[0564:TVORIT]2.0.CO;2.

Sass, O 2010, ‘Spatial and temporal patterns of talus activity - a lichenometric approach in the Stubaier Alps, Austria’, Geografiska Annaler, vol. 92(A), no. 3, pp. 375-391. DOI: 10.1111/j.1468-0459.2010.00402.x.

Temme, AJ, Heckmann, T, Harlaar, P 2016, ‘Silent play in a loud theatre - Dominantly time-dependent soil development in the geomorphically active proglacial area of the Gepatsch glacier, Austria’, Catena, vol. 147, 40‑50.

TirisMaps 2.0., 2016. Available from: . [20 December 2016].

Tollmann, A 1977, Geologie von Österreich. Die Zentralalpen, vol. 1. Franz Deuticke, Vienna.

Winkler, S, Shakesby, RA 1995, ‘Anwendung von Lichenometrie und Schmidt-Hammer zur relativen Altersdatierung präfrührezenter Moränen am Beispiel der Vorfelder von Guslar-, Mitterkar-, Rofenkar- und Vernagtferner (Ötztaler Alpen/ Österreich)’, Petermanns Geographische Mitteilungen, vol. 139, pp. 283‑304.

WGMS FoG database, version 2016-08-16. Available form: . [3 March 2016]. DOI: 10.5904/wgms-fog-2016-08.

Zasadni, J 2007, ‘The Little Ice Age in the Alps: its record in glacial deposits and rock glacier formation’, Studia Geomorphologica Carpatho-Balcanica, vol. 41, 117‑137.

Miscellanea Geographica

Regional Studies on Development

Journal Information


CiteScore 2017: 0.73

SCImago Journal Rank (SJR) 2017: 0.404
Source Normalized Impact per Paper (SNIP) 2017: 0.759

Covered by e.g. Web of Science Core Collection by Clarivate Analytics, and SCOPUS by Elsevier
14 points in the Ministerial journal value rating scale

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 88 88 20
PDF Downloads 37 37 7