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Forests play a key role in local and global scale environmental 
dynamics; therefore, the temporal and spatial monitoring of their 
functioning is critical for the purpose of efficient and sustainable 
management (Linke et al., 2006). In this context, remote sensing is 
a very useful tool compared with traditional surveying techniques, 
as it allows the production of large scale digital thematic maps 
in a fast and reasonably accurate way (Franklin 2001, Panigada et 
al. 2010). In particular, the composition and distribution of forest 
ecosystems is a fundamental factor within the carbon, nitrogen 
and water biogeochemical cycles. For this reason, the accurate 
mapping of forest species is a very important task. In the last 
few years, several studies have been carried out using different 
remote sensing sensors, evaluating the potentialities of both 
passive sensors (i.e., multispectral and hyperspectral sensors) 
and active systems (i.e., Light Detection and Ranging (LiDAR) 
and Synthetic Aperture Radar (SAR) systems).

In the case of a sparse canopy, such as urban vegetation 
(Alonzo et al. 2014) and Savannah (Cho et al. 2012, Colgan et al. 2012), 
or a dense canopy characterized by species with different heights 
or dominated by definable growth stages (Jones et al. 2010, Dalponte 
et al. 2008, Dalponte et al. 2012, Kempeneers et al. 2014), best results in 

species classification were obtained by integrating hyperspectral 
data with the information about tree height and canopy structure 
supplied by LiDAR data. Conversely, in mixed forests with 
closed canopy and a single dominant layer, Ghosh et al. (2014) 
evidenced that the canopy height provided by LiDAR data did not 
significantly affect the mapping accuracy. In these conditions, the 
use of hyperspectral data alone showed good results using either 
a traditional algorithm such as Maximum Likelihood (ML) applied 
on selected indices, in order to reduce spectral dimensionality 
(Boschetti et al. 2007, Pandey et al. 2014), or more sophisticated 
approaches such as vector machines (Marcinkowska et al. 2014), 
with higher accuracy level for a higher spatial resolution (Clark et 
al. 2005, Dalponte et al. 2013, Baldeck et al. 2015). 

The objective of this study was to investigate the operational 
use of Airborne Prism EXperiment (APEX) images for tree species 
mapping in a complex mixed forest ecosystem. APEX images 
were acquired on the Forêt de Hardt (Mulhouse, France) in June 
and September 2013, with a spatial resolution of 3 m. Given the 
fact that image segmentation to detect single tree crowns was not 
feasible in a closed canopy forest at this spatial resolution, pixel 
based classification algorithms were investigated. The possibility 
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Abstract
The accurate mapping of forest species is a very important task in 
relation to the increasing need to better understand the role of the forest 
ecosystem within environmental dynamics. The objective of this paper is 
the investigation of the potential of a multi-temporal hyperspectral dataset 
for the production of a thematic map of the dominant species in the 
Forêt de Hardt (France). Hyperspectral data were collected in June and 
September 2013 using the Airborne Prism EXperiment (APEX) sensor, 
covering the visible, near-infrared and shortwave infrared spectral regions 
with a spatial resolution of 3 m by 3 m. The map was realized by means 
of a maximum likelihood supervised classification. The classification was 
first performed separately on images from June and September and 
then on the two images together. Class discrimination was performed 
using as input 3 spectral indices computed as ratios between red edge 
bands and a blue band for each image. The map was validated using 
a testing set selected on the basis of a random stratified sampling 
scheme. Results showed that the algorithm performances improved from 
an overall accuracy of 59.5% and 48% (for the June and September 
images, respectively) to an overall accuracy of 74.4%, with the producer’s 
accuracy ranging from 60% to 86% and user’s accuracy ranging from 61% 
to 90%, when both images (June and September) were combined. This 
study demonstrates that the use of multi-temporal high-resolution images 
acquired in two different vegetation development stages (i.e., 17 June 
2013 and 4 September 2013) allows accurate (overall accuracy 74.4%) 
local-scale thematic products to be obtained in an operational way.
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to improve the spectral discrimination of species through the 
combination of the spectral information derived from images 
acquired during two different phenological development stages 
(i.e., growing season and incipient senescence) was evaluated 
and results were discussed.

Remotely sensed data collection and processing
Remotely sensed data were acquired with the hyperspectral 

airborne push broom imaging spectrometer Airborne Prism 
EXperiment (APEX), developed by a Swiss-Belgian consortium 
on behalf of the European Space Agency (ESA). APEX covers 
a wide spectral range from the visible to the shortwave infrared 
region of the spectrum (380-2500 nm) with 288 narrow bands, 
which allows a detailed characterization of the spectral response 
of different surfaces. 

Data were acquired over the Forêt de Hardt on June 17, 
2013 and September 4, 2013 at 12:30±30 local solar time (LST), 
with APEX flying at a height of about 6000 m, which results in a  
3 m ground spatial resolution. To cover the entire study area,  
7 flight lines with 30% lateral overlap were planned with a track 
in the principal solar plane (195.3°), in order to minimize shadow 
effects. 

Radiometric calibration of the APEX data was performed 
using dedicated software developed and maintained by 
the APEX consortium, using as input the calibration cubes 
generated from data collected before the flight season on the 
APEX Calibration Home Base (Deutsches Zentrum für Luft- und 
Raumfahrt (DLR), Oberpfaffenhofen, Germany) and the dark 
current data collected in-flight. Following the standard radiometric 
calibration, a vicarious calibration was applied to the spectral 
regions suffering from slightly higher calibration uncertainties, 
i.e., the region around 1030 nm and the end of the SWIR  
(1300-2500 nm). This was based on four artificial targets (two 
black, one grey and one white) made of PVC-coated canvas 
material (‘Odyssey’ trademark material, from Kayospruce Ltd., 
UK) and some ‘pseudo-invariant’ features: concrete, asphalt 
with different brightness and pit material. Their radiance 
and reflectance were measured with an ASD spectrometer 
simultaneously with the APEX overflights. 

Spectral misregistrations were detected for every across 
track pixel, following a spectrum-matching technique (Gao et al. 
2004), which was applied on the continuum removed at sensor 
radiance across selected atmospheric absorption features. 

Geometric processing of the APEX data was performed 
by means of direct georeferencing, using a dedicated software 
developed by VITO (Vlaamse Instelling voor Technologisch 
Onderzoek). Direct georeferencing requires knowledge of the 
position and look direction of the sensor, and of the elevation, to 
adjust for the topographic relief. 

The position and orientation of each image scan line was 
obtained from the post-processed GPS (Global Positioning 
System) and IMU (Inertial Measurement Unit) data. Angular offsets 
in X, Y and Z directions between the APEX and IMU frame were 
determined through a boresight calibration and accounted for in 
the boresight misalignment angles. The elevation was obtained 
from a DTM (Digital Terrain Model) of the Mulhouse region at 25 
m horizontal resolution. From this data, the geographic location 
and the sun-viewing geometry was calculated for every image 
pixel. The resulting absolute geolocation accuracy was found to 
be at sub-pixel level.

The data were projected to UTM zone 32N, WGS84, with  
a spatial resolution of 3 m by 3 m. 

The USGS (United States Geological Survey) GCTP 
(General Cartographic Transformation Package) was used for 
the coordinate projection, while the nearest neighbour method 
was applied for the spatial resampling. 

Species classification method
The forest species map was realized on the North portion of 

the Forêt de Hardt, where the ground surveys were conducted. 
A spectral endmember set was selected in order to train the 
algorithm to identify and assign all the pixels of the image to the 
proper class, as required by a supervised classification approach. 

The tree species present in the study area were identified 
by forest experts through a ground survey conducted over an 
extensive area. The forest experts visually evaluated the species 
composition in 42 elementary sampling units (ESU) of 20 x 20 m,  
considering all the species representing more than 5% of the 
leaf area of the ESU. The centre of the ESU was geo-located by 
means of the high precision global positioning system Trimble 
Geo-XT (Trimble, California, USA). Out of the dominant species 
found, five – hornbeam (Carpinus betulus L.), two species of oak 
(Quercus petraea (Matt.) Liebl., Quercus robur L.), linden (Tilia 
L.) and pine (Pinus L.) – were identified as the most common. 
Together, these forest species represent an average 93% of each 
ESU. Therefore, they were accounted for in the production of the 
forest species map. Other species were not taken into account, 
due to the fact that they were identified in only a few ESU  
(e.g. maple - Acer campestre L., Acer platanoides L.) or were 
mainly found as single trees (e.g. larch - Larix decidua Mill.). 

The endmember set was selected on the APEX images by 
integrating the visual interpretation of high resolution orthophotos 
and ground surveys. It included a total of 400 pixels distributed 
between the four forest species. For each species, homogeneous 
polygons composed of ten to twelve pure vegetation pixels – 
selected on two to three crowns, based on the crown dimension – 
were defined within several ESUs (Table 1). An example of crown 
pixel selection is depicted in Figure 1. 

Each polygon was considered as a separate spectral class 
during the classification process in order to account for the 
intrinsic spectral variability of the species over the study area. 
The spectral classes belonging to the same species were then 
merged in the post-classification process. Quercus petraea 
(Matt.) Liebl. and Quercus robur L. were considered as the same 
classification unit, due to their spectral similarity. An additional 
class, “shadow”, which accounts for the plant inter-crown 
shadows, was included in the spectral endmember set. 

Hence, the spectral endmember set was used to train a ML 
algorithm to distinguish the different forest species. Spectral 
indices (i.e., APEX band ratios) in the red edge portion of the 
spectrum (680-750 nm) were used as input, in order to avoid 
information redundancy, which could decrease the classification 
accuracy (Hughes 1968). The spectral indices selected were those 
successfully used by Boschetti et al. (2007). Three indices expressed 
as band ratios between APEX bands 45 (659.2 nm), 58 (701.6 nm)  

Table 1. Characteristics of the endmember set: for each class, 
the number of ESU in which pixels to assemble the spectral 
endmember set were selected, and the number of pixels per ESU 
collected, are reported

Forest species Classification 
unit

N of 
ESU

N of pixels 
per ESU

Carpinus betulus L. Hornbeam 12 10

Quercus robur L., 
Quercus petraea 

(Matt.) Liebl.
Oak 4 10

Tilia L. Linden 2 12

Pinus L. Pine 6 10

 - Shadow 3 50
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and 68 (740.2 nm) and band 7 (480.8 nm) were calculated on 
June and September APEX radiance images. The multi-temporal 
endmember set used to train the ML algorithm is shown in  
Figure 2. 

The indices selected were located in the red edge 
because spectral differences in this region mirror differences 
in photosynthetic pigments and canopy greenness that vary 
between species and within their phenological cycle (Horler et al.  
1983, Filella & Penuelas 1994, Hu et al. 2008, Zarco-Tejada et al. 1999).  
The ratio with the blue band is useful in correcting for atmospheric 
effects. 

Since APEX images were acquired in two different vegetation 
phenological development stages, the classification was first 
performed on June and September images separately and then 
on the joint images in order to assess the improvement on the 
classification accuracy of the multi-temporal information. The 
maps obtained were slightly filtered in order to improve the clarity 
of the thematic product; isolated pixels were identified by the 
sieve class function (ENVI 5.0, ITT Visual Information Solution). 

Next, a majority analysis based on a 3 x 3 kernel was used to 
assign these spurious pixels to the major class. 

Finally, the maps were validated using a testing set composed 
of 250 pixels selected on the basis of a random stratified 
sampling scheme, taking into account the unequal distribution 
of the classes. The number of testing pixels for each class 
reflected the size of that class: 90 testing pixels were randomly 
selected for hornbeam, 100 for oak, 20 for linden, 20 for pine 
and 20 for shadow. The testing pixels were labelled according to 
the visual interpretation of the high resolution orthophotos and 
used as ground truth in the validation process. The classification 
performances were then evaluated by computing the Overall 
Accuracy (OA), the Producer’s Accuracy (PA) and the User’s 
Accuracy (UA) of the map. OA is calculated as the ratio between 
the sum of pixels that are classified in the correct class and the 
total number of testing pixels. PA refers to the probability that the 
classifier has labelled a pixel as belonging to a class given that 
the ground truth is that class. It is computed for each class as 
the ratio between the number of correctly classified pixels and 
the total number of testing pixels for that class. UA refers to the 
probability that a pixel belongs to a class given that the classifier 
has labelled it as belonging to that class. It is calculated for each 
class as the ratio between the number of correctly classified 
pixels and the total number of pixels that were assigned to that 
class. 

Results
The classification process enabled the production of thematic 

maps of the most common forest species in the Forêt de Hardt. 
The classification accuracy was assessed on the maps obtained 
using as input: (i) only the image acquired in June, (ii) only the 
image acquired in September, and (iii) the June and September 
images together. The results of the classification performed with 
only one image as input showed better results for the June image 
(OA=59.5%) than the September image (OA=48%). This can be 
explained by the fact that the vegetation in June is in its maximum 
seasonal development stage and the illumination conditions are 
better (i.e., maximum solar elevation, which minimizes shadow 
effects). However, the June image did not allow an accurate 

Figure 1. Example of the spectral endmember collection for the training of the ML algorithm: pure crown pixel of hornbeam (yellow) and 
oak (cyan) identified on (a) a high resolution orthophoto and (b) an APEX false colour image (APEX bands 92, 42, 16)

Figure 2. Spectral endmember set used to train the ML algorithm 
in order to classify the different vegetation species
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classification of linden, which showed high commission errors 
with hornbeam (UA=36%), while in September the incoming 
senescence allowed a better discrimination of linden from 
hornbeam (UA=53%). The use of both images improved the 
classification result significantly (OA=74.4%), confirming that 
the use of multi-temporal images supplies additional information, 
leading to better spectral class discrimination. PA and UA also 
showed an improvement for all classes, with PA ranging from 
60% to 86% and UA ranging from 61% to 90%, except for the 
pine PA, which decreased from 85% to 80%. Again, this can be 
explained by the lighting conditions, which were not optimal in 
September, with shadow effects affecting the conifer canopy 
more than the deciduous. 

The confusion matrix obtained from crossing the ground truth 
data with the results of the multi-temporal classification is shown 
in Table 2. An example of the best classification result obtained 
using the multi-temporal information is depicted in Figure 3. 
The map shows a clear predominance of the hornbeam-oak 
association, which is the climax community of forest at these 
latitudes, while the distribution of pine and linden is more 
restricted. 

In previous studies, higher accuracy levels were achieved by 
using higher spatial resolution (1 m or less), with OA close to 90% 
for pixel-based classifications, and up to 95% when individual 
tree classifications were conducted (Clark et al. 2005, Dalponte et al.  
2013, Baldeck et al. 2015). OAs consistent with our results have 
been shown in previous studies with lower spatial resolution  
(≥ 3 m). In a similar mixed forest ecosystem, Boschetti et al. (2007) 
evidenced that the classes with lower accuracy are those with 
higher fragmentation, such as the typical association of Quercus 

robur L. and Carpinus betulus L. This is confirmed by our results: 
the commission error between oak and hornbeam classes is in 
fact higher compared to the error between other classes (i.e., 
pine and linden). Marcinkowska et al. (2014) used APEX images with 
a spatial resolution of up to 2 m to map vegetation communities 
rather than single tree species, confirming that, at this spatial 
resolution, it is worth scaling up at community level more than 
at tree species level in order to improve vegetation mapping 
accuracy. Despite this, the use of multi-temporal images allowed 
a reliable thematic product to be obtained, the quality of which 
can also be appreciated visually (Figure 4). 

Conclusions
In this paper, APEX images at 3 m resolution were used to 

map forest species in the Forêt de Hardt (Mulhouse, France),  
a mixed forest ecosystem. The use of an operational algorithm, 
the ML, was improved by the selection of spectral bands 
combined in ratio indices sensitive to plant pigment content. 
It was demonstrated that the combination of multi-temporal 
images in the classification process led to a good accuracy level 
(OA=74.4%) in forest species mapping. On the other hand, with 
only one APEX overpass and a spatial resolution of 3 m, the 
accuracy level of species classification was significantly lower 
(OA<60%). As a matter of fact, the availability of two images 
– the first acquired when the vegetation was in its maximum 
development stage and the second when senescence was 
incoming – allowed the detection of variations in the spectral 
response linked to species-specific phenological development, 
which significantly improved the map accuracy. However, it is 
stressed that a flight later in the season would be suggested in 

Table 2. Confusion matrix obtained by crossing the reference data with the classification result. In each cell, the value is expressed as 
number of pixels (top) and percentage (bottom). The last line and column represent Producer’s Accuracy (PA) and User’s Accuracy 
(UA) respectively

Testing set

A
P

E
X

 c
la

ss
ifi

ca
tio

n

Hornbeam Oak Linden Pine Shadow Tot UA

Hornbeam 78
70.91%

9
12.68%

3
15.79%

0
0%

0
0%

90
36%

78/90
86.67%

Oak 30
27.27%

61
85.92%

3
15.79%

1
5%

5
16.67%

100
40%

61/100
61%

Linden 2
1.82%

1
1.41%

13
68.42%

1
5%

3
10%

20
8%

13/20
65%

Pine 0
0%

0
0%

0
0%

16
80%

4
13.33%

20
8%

16/20
80%

Shadow 0
0%

0
0%

0
0%

2
10%

18
60%

20
8%

18/20
90%

Tot 110
100%

71
100%

19
100%

20
100%

30
100%

250
100%

PA 78/110
70.91%

61/71
85.92%

13/19
68.42%

16/20
80%

18/30
60%

OA=74.4%
k=0.6374
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Figure 3. Example of the thematic map that represents the four most common dominant species in the Forêt de Hardt

 
Figure 4. Detail of the thematic product obtained. (a) Forest species map; (b) High resolution orthophoto of the same area
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order to emphasise the spectral differences between oak and 
hornbeam. The use of multi-temporal information was made 
possible by APEX’s high absolute geo-location accuracy (i.e., 
sub-pixel level), which ensured a good overlapping of the images 
acquired at different times. This confirmed the high quality of 
APEX data and its valuable use in forest applications. In order 
to improve the classification accuracy through the mapping 
of individual trees, a higher spatial resolution (about 1 m) is 
suggested. 
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