
MORAVIAN GEOGRAPHICAL REPORTS	 2016, 24(2)

60

MORAVIAN GEOGRAPHICAL REPORTS	 2016, 24(2): 60–70

60

Institute of Geonics, The Czech Academy of Sciences

journal homepage: http://www.geonika.cz/mgr.html

doi: 10.1515/mgr-2016-0011

MORAVIAN GEOGRAPHICAL REPORTS
 

MORAVIAN
GEOGRAPHICAL  REPORTS

Vol. 23/2015                     No.  4

Illustrations to the paper by S. Kurek et al.

Figures 8, 9: New small terrace houses in Wieliczka town, the Kraków metropolitan area (Photo: S. Kurek)

a Regional Economic Activity and Development, Enterprises for the Future, School of Business, University of 
Skövde, Sweden (*corresponding author: M. Olsson, e-mail: michael.olsson@his.se)

Functional regions in gravity models  
and accessibility measures

Michael OLSSON a *

Abstract
Accessibility measures are useful for studies in Economic Geography. For example, accessibility to potential 
customers can be used in a study of firm behaviour. In such a study, it would be relevant to consider where 
potential customers live. This can be accomplished by splitting the accessibility measure into three parts: 
accessibility within the municipality, in other municipalities within the functional region, and in other regions. 
Many studies have proved this to be a very useful way to incorporate the spatial structure of the economy 
into economic studies. This paper deals with the issue of finding the distance-friction parameters needed to 
calculate such accessibility measures. There is a particular distance-friction parameter for interaction within 
the municipality, between municipalities within the functional region, and between regions. One way to find 
the distance-friction parameters is to solve a constrained gravity model, in which the functional regions 
are used as constraints. Both the models and the optimisation procedures in matrix form, and the Matlab 
programs used in the research are presented. The spatial constraints are gradually introduced into the models, 
which empowers the researcher to make such adjustments on their own. The data set used is available for 
downloading, and the reader can then try the models before creating a data set of their own.
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1. Introduction
On the global level, the use of specialisation and scale 

economies increase overall production. Individuals as well 
as regions specialise in producing only a part of what they 
consume. With more goods and services available, society 
has the potential to create a better life for the population. 
Transportation of both production factors and products are 
essential factors in this complex system.

It is important to consider and take into account that 
economic activity has a location, since spatial interaction in 
most cases declines with distance. Geurs and van Wee (2004) 
present and review accessibility measures: Hansen (1959) 
was one of the first to use the accessibility concept. 
Johansson, Klaesson and Olsson (2002, 2003) suggest that 
it is useful to split the accessibility measure into parts, and 
the idea of accessibility measures on three different spatial 
levels has been widely adopted. For example, it matters to a 
firm, with a store in a municipality, if a potential customer 
lives within the municipality, in another municipality 
within the functional region, or in another region. The firm 
can calculate accessibility to potential customers within the 
municipality, in other municipalities within the functional 
region, and in other regions. It can be valuable to split 

the accessibility in this way, since they are likely to be of 
unequal importance to the firm.

Many studies, mostly Swedish, have used the results 
from our earlier studies (Johansson, Klaesson and 
Olsson, 2002, 2003). It has been used to study many different 
activities: for example, Andersson and Ejermo (2005) study 
knowledge sources and the innovativeness of corporations; 
Gr�sjö  (2006) studies spatial spillovers of knowledge 
production; Karlsson and Olsson (2006) study how to define 
functional regions; Johansson and Karlsson  (2007) study 
R&D and export diversity; Andersson and Gr�sjö  (2009) 
study representations of space in empirical models; 
Olsson  (2012) studies the work at the public employment 
offices; Backman  (2013) studies human capital and firm 
productivity; Larsson and Öner (2014) study retail location; 
and Larsson  (2014) studies the density-wage relationship. 
Gr�sjö and Karlsson  (2015) is a nice review that contains 
additional papers. Gr�sjö and Karlsson  (2013: 1) write 
“However, it is a general method and there is no reason why 
the method does not apply for other countries”.

In order to calculate accessibility at three different spatial 
levels, the corresponding distance-friction parameters are 
needed. The main purpose of this paper is to enable you to 
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calculate the distance-friction parameters for the country 
you are interested in. The procedures are illustrated, and you 
will learn how to solve such models in detail using Matlab. 
In this paper, three models are stated in matrix form. This 
makes it easier to connect the text to the computer program. 
The ambition is to make it easy to look at the mathematical 
formulation and find almost the same in the program. In 
order to reduce the threshold, a data set is available for 
downloading. With the data and programs available, you can 
run the programs and check all the results. In this paper, 
the first model is gradually improved by incorporation of 
additional spatial constraints. There are several advantages 
with this approach. It makes the presentation cleaner and 
easier to grasp. Moreover, it enables you to make your own 
changes in the programs. In the future, you may want to 
estimate another version of the third model, or you may have 
a data set structured differently. After reading this paper 
you can handle such issues with ease. At least, that is the 
intention. The models are gradually made more complex, by 
adding constraints, to better reflect reality. It is also a purpose 
of the paper to present a comparison of the predictive power of 
the models. The third model has relatively many constraints, 
and performs better.

2. Commuting
Most workers have a relatively short commute, and 

it is rare to find a worker with a really long commute. 
This tendency is illustrated in Fig.  1. In this paper, 
municipalities are used as the spatial unit of analysis. 
The municipalities are more or less related to each other, 
however, and this relatedness across municipalities is 
captured using functional regions. It is possible to form 
functional regions using several approaches. The basic idea 
is that a functional region is built from municipalities with 
a relatively high level of interaction. In this paper the local 
labour market definition of a functional region is used. A 
local labour market consists of the municipalities that are 
tightly connected by commuting. A local labour market 
has a self-sufficient centre and surrounding municipalities. 
The surrounding municipalities are added to the core 
municipality, or to a municipality connected to the core, 
using one-way commuting. You find details of the procedure 
and maps of the Swedish local labour markets from Statistics 
Sweden  (2015). An alternative to local labour markets is 
to create commuting zones using two-way commuting. 
Obviously, it is also possible to make other considerations. 
Karlsson and Olsson  (2006) present local labour markets 
and some other methods and alternatives. The exact version 
of the functional region is not that important. The results 
will be similar if another version is picked. The basic reason 
is that most municipalities would be aggregated to the same 
functional region, independent of approach.

The commuting pattern gradually changes with time, 
and the area under the curve in Fig. 1 gradually shifts to 
the right with increased mobility. Not much happens to 
the pattern during a short period of time, but the pattern 
may change significantly if you observe a longer period. In 
Sweden, the daily average mobility of persons has increased 
from half a kilometer in the year  1900  to  45  kilometers 
in the year  1999  (Andersson and Strömquist,  1988; 
SIKA,  2000). The Swedish Institute for Transport and 
Communications Analysis (SIKA) has been replaced by 
the government agency Transport Analysis, and they 
estimate that the 2011 mobility is 44 kilometers (Transport 
Analysis,  2013). This change is also readily seen in the 

number of functional regions. With a long-term perspective, 
the number of functional regions has declined. This means 
that the models capture the spatial structure at a point in 
time. The overall tendencies will be the same for example 
ten years later, but the models should be rerun once in a 
while with the then present spatial structure. Moreover, it is 
possible to form functional regions per category of workers. 
In some studies, one may want to investigate educational, 
occupational, and/or gender differences.

The country consists of n municipalities, and a worker 
commutes from the home municipality, i = 1, 2, …, n, to 
the work-place municipality, j = 1, 2, …, n. The observed 
commuting information is collected in the (n × n) 
commuting matrix, c = {cij}. A solution to a model would 
give the estimated commuting matrix, c~. There is also a 
corresponding (n × n) commuting-time matrix, t = {tij}. Let 
us define a (1 × n) unit row vector, u. The (n × 1) vector with 
the number of workers that lives in the municipalities equals 
the row sum of the commuting matrix, o = cu', and the 
(1 × n) vector with the number of jobs in the municipalities 
equals the column sum of the commuting matrix, d = uc. 
The existing spatial structure is captured in the form of 
matrices. Three dummy variables are used to classify that a 
commute may end within the home municipality, in another 
municipality within the same functional region, or in another 
region. When a commute ends within the home municipality 
kij = 1, otherwise kij = 0. If a commute ends in another 
municipality within the home region lij = 1, otherwise lij = 0. 
If the commute ends in another region mij = 1, otherwise 
mij = 0. This information is collected in the (n × n) regional 
dummy matrices k, l, and m, respectively. In this study, 
only links with a commuting time less than 150 minutes are 
included. This means that commuting on the other links, 
(c(t > 150) = 0), are ignored. To identify all links that are 
included in this study zones are created, and collected into 
the (n × n) zone matrix, z. In this matrix zij = 1 if tij ≤ 150, 
otherwise zij = 0.

3. Data
In Table 1 you find the first five and last five rows in the 

Excel file used as input. The data set is in an Excel file that 
you have to download to run the Matlab programs. It is 
available from the following address: www.his.se/commuting. 
Nevertheless, it is useful to illustrate the structure of the 
data in this paper. At that time (1998), Sweden was separated 
in  289  municipalities. Hence, there are  83,521  commuting 
links. Each link has its own row in the Excel file. For each 
link, the data contains information whether the commute 
is within a municipality, between municipalities within a 

Fig. 1: Interaction declines with distance 
Source: author´s elaboration
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region, or between regions, the commuting time, and the 
number of commuters. The Excel file only contains the white 
part of Table 1.

The data has several sources. The commuting information 
originates from the Labor Statistics based on administrative 
sources (RAMS) from Statistics Sweden. Also, the 
information regarding the spatial structure originates from 
Statistics Sweden. The commuting times come from The 
Swedish Road Administration.

In Tab. 2, descriptive statistics for the number of commuters 
per link are presented. In Tab.  3, you find descriptive 
statistics for the commuting time per link. These numbers 
are calculated using only the active links with a commute 
shorter than 150 minutes. In Tab. 2, you also find the number 
of active links, the number of links with zero commuters, and 
the total number of links, given that the commuting time is 

shorter than 150 minutes. The number of commuters and the 
commuting times are clearly different for commutes within 
a municipality, between municipalities within a region, 
and between regions. In this paper, commuting flows are 
separated into commuting within a municipality, between 
municipalities within a region, and between regions. This 
separation is based on that these commuting flows differ. The 
null hypotheses, that the relative commuting frequencies, 
cij / oi, for commuting within a municipality, between 
municipalities in a region, and commuting between regions 
are equal, have been tested and they are rejected.

4. Models, Matlab programs and results
Some spatial-interaction models are linear when written 

in logarithmic form. Fischer and Wang (2011) present the 
drawbacks related to the use of ordinary least squares to 

Tab. 1: An excerpt from the data file, but the file only contains the white part
Source: Statistics Sweden and the Swedish Road Administration; author´s calculation

Tab. 2: Descriptive statistics for commuting per link per commuting type 
Note: * Only commuting with t < 150 included 
Source: Statistics Sweden and the Swedish Road Administration; author´s calculation

Tab. 3: Descriptive statistics for commuting time (minutes) per link per commuting type 
Source: Statistics Sweden and the Swedish Road Administration; author´s calculation

Row From To kij lij mij tij cij

1 1 1 1 0 0 4.71 6,904

2 1 2 0 1 0 11.52 141

3 1 3 0 1 0 24.31 28

4 1 4 0 1 0 30.98 11

5 1 5 0 1 0 16.10 479

… … … … … … … …

83,517 289 285 0 0 1 209.64 225

83,518 289 286 0 0 1 236.85 3

83,519 289 287 0 0 1 216.61 19

83,520 289 288 0 0 1 219.08 2

83,521 289 289 1 0 0 67.13 10,549

Measure Within municipality Within region Between regions Sum

Min 761 1 1 –

Median 4,394 51 3 –

Mean 9,732 392 22 –

Max 266,980 19,647 6,050 –

Std. dev. 20,595 1,340 105 –

# active links* 289 2,087 9,911 12,287

# zero links* 0 81 8,413 8,494

# links* 289 2,168 18,324 20,781

Measure Within municipality Within region Between regions

Min   3.4   6.3   12.3

Median 13.0 31.4   89.6

Mean 17.3 33.8   90.4

Max 89.8 96.3 150.0

Std. dev. 13.6 15.7   33.9
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estimate such a model. So, even though it may be tempting 
to estimate the logarithmic form of a spatial-interaction 
model using ordinary least squares, it should be avoided. 
In models of commuting it is preferred that the observed 
number of a) jobs in a municipality, and b) workers that 
live in a municipality (i.e. the data) both to be exactly equal 
to the estimates produced from the model. Olsson  (2002) 
writes that constrained models have the advantage in that 
“(by construction) the model outcome is consistent with 
actual in- and out-commuting.” In addition, we often want 
to include other constraints (e.g. time constraints). You can 
model the individual’s choice to commute, or the aggregate 
commuting pattern. A gravity model of the aggregated 
commuting pattern relates interaction to an origin weight 
function, a destination weight function, and a distance 
deterrence function (Sen and Smith, 2011). The aggregate 
commuting function derived from maximising entropy is 
equivalent in form to the one derived from a logit model of 
individual (discrete) choice (Anas,  1983; Mattsson,  1984). 
So, studying the commuting pattern by maximising entropy 
a) produces a solution similar in form to the one that follows 
from individuals choosing their commute, and also b) 
enforces structure to the model via constraints.

In this paper, the aggregate commuting pattern is 
modelled by maximising entropy. In this section, you find 
three models of commuting. The first model has only two 
constraints. The point of this model is not that it will 
replicate the commuting pattern well, but that this model 
contains the essence of the following models. Each model 
is fully presented, i.e. the program used to estimate the 
model is described and the results are presented, before 
the next model is introduced. The first model is the base to 
which spatial structure (e.g. functional region, origin and 
destination constraints) is gradually incorporated. This is 
straight forward given an understanding of the first model 
and the Matlab program used to solve it. In the following 
models, the ideas presented in the first model are just 
extended. The second model has six constraints, and the 
third model has 582 unique constraints. The ambition is to 
incorporate spatial constraints into the model and to better 
replicate the pattern illustrated in Figure 1. If you want to 
get a preview of what is ahead, you can compare Fig. 1 to 
Fig. 10. It is the third model that is the best, since it enforces 
many more constraints. The first two models are just used 
to get to the third model, in the easiest possible manner.

By construction, Model 3 does a better job replicating the 
commuting pattern. In Model 3, the balancing factors (i.e. 
constraint multipliers) for where workers live (i.e. the origin 
constraints) and work (i.e. the destination constraints) 
captures the spatial surrounding of locations. All workers in 
Sweden are included in the data, but if all workers and all 
firms could redo their choices, many choices would change. 
The observed commuting data is but one realisation out 
of many possible. It is an aggregate observation in time 
of the (random) discrete choices made by individuals and 
firms. One consequence of this randomness is that there 
are spatial dependencies, e.g. if relatively many from a 
municipality commute on one link, it follows that relatively 
fewer commute on the other links. This would be seen as 
deviations from the estimated pattern.

4.1 Model 1
The observed population equals the sum of all commuters, 

p = ∑i ∑j cij = ucu'. The Hadamard product sign, ° , is used 
for entrywise multiplication of matrices. The observed 

total commuting time equals r = ∑i ∑j cij tij = u(c ° t)u'. In 
the first model, two constraints enforce that the estimated 
population, p~ = uc~u', equals the observed population, and 
that the estimated total commuting time, r~ = u(c~ ° t)u', 
equals the observed total commuting time. In constrained 
gravity models the objective is to maximise the system 
entropy, ∑i ∑j cij ln(cij) – cij = − u(c~ ° ln(c~) – c~)u', subject to the 
constraints. Therefore, the primal formulation of the problem 
is to max L(c~, δ, γ), where the Lagrangian function is L(c~, δ, 
γ) = − u(c~ ° ln(c~) − c~)u' + δ(uc~u' − p) + γ(r − u(c~ ° t)u').

Let us call the Lagrangian multipliers, δ and γ, the proximity-
preference parameter and the distance-friction parameter, 
respectively. In this model, the proximity-preference 
parameter is a fixed factor for all commutes, and does not 
really reveal any preference for proximity. But, the name will 
make more sense in the following models. The Lagrangian 
written in this form highlights the constraints. But, to get to 
the dual formulation of the problem it is easier to use L(c~, 
δ, γ) = u(c~ ° ln(c~) + c~ + δc~ − γc~ ° t)u' − δp+γr. We can rewrite 
∂L/∂c~ = −ln(c~) + δ − γt = 0 as c~ = exp(δu'u − γt). Hence, 
commuting on a particular link equals cij = exp(δ − γtij). 
Inserting this in the primal form gives the dual form: 
minD(δ, γ), where D(δ, γ) = u exp(δu' u − γt)u' − δp+γr.

The Newton-Raphson iterative procedure is used to find 
the optimum, and you find a description of the procedure in 
Appendix 1 (see link to Supplementary material at the end of 
the article). The iterative procedure needs some parameter 
start values. Reasonable start values must fulfill one of the 
constraints, and here the population constraint is used, 
uc~u' − p = 0. If γ0 = 0 it follows that δ0 = ln(p / (uzu')). 
In this study all links where tij > 150 are ignored. This 
reduces the number of links from u(k + l + m)u' which 
is 83,521 to uzu' which is 20,781. With p = 3,847,782 the 
start value is equal to δ0 = 5.2212. Now, it is time to iterate 
from the start values towards the solution. The start values 
imply that commuting is not affected by commuting time. 
Hence, estimated commuting on links with long commuting 
time is bigger than observed commuting. Therefore, the 
estimated commuting flows use more time than is allowed. 
This implies that the distance friction parameter has to 
be raised. Raising the distance friction reduces estimated 
commuting flows, which leads to that too few persons work. 
It gives that the proximity-preference parameter has to be 
raised. And, this is sequentially repeated until the solution 
is found. If a constraint is violated in the opposite direction, 
the parameter estimate is adjusted accordingly.

As said, it is most likely that the estimated commuting flows 
do not fulfill the constraint on commuting time, r − u(c~ ° t)
u' = 0, at the start. The distance-friction parameter estimates 
are adjusted using the Newton-Raphson procedure. The 
partial derivatives are ∂D / ∂γ = − u(c~ ° t)u' + r = r − r~ and 
∂2D / ∂γ2 = u(c~ ° t ° t)u' = s~, which leads to the following 
adjustment scheme γ(n+1) = γn − ρ(r − r~n) / s~n. It is important 
to recalculate the commuting flows, before adjusting 
the proximity-preference parameter. The derivatives 
are ∂D / ∂δ = uc~u' − p = p~ − p and ∂2D / ∂δ2 = uc~u' = p~, 
which leads to the following adjustment scheme, 
δ(n+1) = δn − ρ(p~n − p) / p~n. In the first model, ρ = 1. It is 
important to recalculate the commuting flows, before starting 
over again. The program iterates until all constraints are 
fulfilled with extreme accuracy, since the run time is short.

4.1.1 The Matlab program

Now it is time to look at the Matlab program for Model 1. 
To make the reading easier, the program is included in 
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Appendix 2 (see Supplementary material). The structure of 
the first program is maintained in the models to come. First, 
the data file is read. In this section of the program u, t, and c 
are declared, and filled with values from the data. Then, the 
a priori information is calculated from the data, and the start 
values are set. In this part of the program, r, p, z, and the start 
values are calculated as described in the text above. Here, the 
estimated commuting flows using the parameter start values 
are calculated. The parameter start values and the value of 
the dual function are saved. This is done to later illustrate 
convergence. In the main iterative part of the program, each 
parameter is adjusted in relation to the constraint deviation. 
First, the distance-friction parameter is adjusted. Second, 
the proximity-preference parameter is adjusted. After each 
parameter adjustment the estimated commuting flows are 
recalculated. The new parameter values and the value of the 
dual function are saved. The end part of the program creates 
graphs, and saves the results to an Excel file. The Model 1 
program is adjusted in the following models to incorporate 
additional spatial information.

The mathematical notation in the program is for the most 
part as in the text, so it should be easy to follow. However, 
there are four minor exceptions. In the text the Hadamard 
product sign ° is used for entrywise multiplication of 
matrices. In Matlab .* multiply two matrices entrywise. The 
other three types of exceptions are illustrated by example. 
The proximity-preference parameter is delta in the program 
and δ in the text. The travel-time matrix is t in the text and t 
in the program. In the text p~ refers to the estimated working 
population, while p_tilde is used in the program.

The program is published on the following web address: 
www.his.se/commuting. This means that you do not have 
to retype the code to run the program, you can just use the 
published file. In order to run the program for the first model 
you must save the data and the program to your computer. 
It is recommended that you first save the Excel file to your 
Matlab folder. In the next step, you save the program file 
containing the first program into the same Matlab folder. 
Then start Matlab and run the program.

4.1.2 Results

In Figure  2 you find the estimated distance-friction 
parameter per iteration. In Figure 3 you find the estimated 
proximity-preference parameter per iteration. To keep the 
first Matlab program as simple as possible the value of the 
dual function and the parameter values are collected per 
iteration in the published program. The start values of the 
distance-friction parameter and the proximity-preference 
parameter is zero and  5.2212, respectively. This gives the 
start point  (5.2212,0) in Figure  4. In Figure  4, the thick 
line illustrates the path from the start point to the solution. 
The value of the dual function per iteration is presented in 
Figure 5. After about 15  iterations neither the parameters 
nor the value of the dual function change more than 
marginally. The model converges at the solution, where the 
distance-friction parameter is  0.1197 and the proximity-
preference parameter is 9.809.

However, nothing prevents us from saving all information 
during the approach to the solution. By doing some small 
adjustments in the Matlab program, it is possible to save the 
parameter values and the value of the dual function at every 
parameter adjustment, rather than per iteration. From 
the start point  (5.2212,0), the distance friction parameter 
is adjusted to  0.0075, leading to the point  (5.2212,0.0075) 
in Figure  4. Then the estimated commuting flows are 
recalculated and the proximity-preference parameter is 

adjusted to 6.1519, leading to the point (6.1519,0.0075). This 
ends the first iteration, and is seen as the first step from 
the start point following the thin line in Figure  4. Hence, 
iterating and saving results in this way gives a set of steps 
to the solution. It is of course also an option to just save the 
final solution values.

Fig. 2: Distance-friction parameter convergence
Source: author´s elaboration

Fig. 3: Proximity-preference parameter convergence
Source: author´s elaboration

Fig. 4: The two ways to the solution
Source: author´s elaboration

Fig. 5: The value of the dual function per iteration
Source: author´s elaboration
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4.2 Model 2
Model 2 has six constraints, and they are similar to the two 

constraints present in Model  1. The idea is to incorporate 
more spatial information into the model. Some persons 
work within their home municipality, while others commute 
to another municipality within their home region, and 
some even commute to another region. Model  2 has three 
constraints replacing the Model 1 constraint enforcing that 
the estimated working population is equal to the observed 
population. The observed number of commuters within 
a municipality is equal to p1 = u(k ° c)u'. The observed 
number of commuters between municipalities within the 
home region is p2 = u(l ° c)u'. The observed number of 
commuters between regions is p3 = u(m ° c)u'. They are 
collected in the column vector p. In this study the working 
population is divided such that p1 = 2,812,614, p2 = 817,802 
and p3 = 217,366. To each constraint there is a proximity-
preference parameter, all collected in the column vector δ. In 
Model 2, three constraints replace the constraint regarding 
total commuting time present in Model 1. The observed total 
commuting time for commutes within a municipality equals 
r1 = u(k ° c ° t)u'. The observed total commuting time for 
commutes between municipalities within the home region 
is r2 = u(l ° c ° t)u'. The observed total commuting time for 
commutes between regions is r3 = u(m ° c ° t)u'. They are 
collected in the column vector r. To each time constraint 
there is a distance-friction parameter, and they are collected 
in the column vector γ. This model is like splitting Model 1 
into three completely separate parts. The primal form of the 
problem is max L(c~, δ, γ), where L(c~, δ, γ) = ∑6s=0 Ls  and the 
Lagrangian parts Ls are defined in (1)–(7).

L0 = − u(c~ ° ln(c~) – c~)u'				    (1)

L1 = δ1(u(k ° c
~)u' − p1)				    (2)

L2 = δ2(u(l ° c
~)u' − p2)				    (3)

L3 = δ3(u(m ° c
~)u' − p3)				    (4)

L4 = γ1(r1 − u(k ° c
~ ° t)u')				    (5)

L5 = γ2(r2 − u(l ° c
~ ° t)u')				    (6)

L6 = γ3(r3 − u(m ° c
~ ° t)u')				    (7)

You find the three constraints for the number of commuters 
in  (2)–(4) and the three constraints on total commuting 
time in (5)–(7). This is similar to the earlier model, and the 
adjustment process to find the six Lagrangian multipliers is 
therefore straight forward. The derivative of the Lagrangian 
with respect to commuting gives the estimated commuting 
matrix c~ = exp(δ1k + δ2l + δ3m – (γ1k + γ2l + γ3m) ° t). 
By inserting this into the Lagrangian we get the 
dual formulation of the problem, min D(δ,γ), where 
D(δ,γ) = u exp(δ1k + δ2l + δ3m – (γ1k + γ2l + γ3m) ° t)
u' – δ'p + γ'r.

To find reasonable start values, assume that all distance-
friction parameters are zero and choose to enforce the 
three constraints regarding the number of commuters 
within the home municipality, between municipalities 
within the home region, and between the regions. 
Then the start values for the proximity preferences are 
δ1 = ln(p1 / u(k ° z)u')), δ2 = ln(p2 / (u(l ° z)u')), and 
δ3 = ln(p3 / (u(m ° z)u')), respectively. If you compare 
these start values to the start value in Model 1 you see 
the similarity. Collect the derivatives s~1 = u(k ° t ° t ° c

~)
u', s~2 = u(l ° t ° t ° c

~)u', and s~3 = u(m ° t ° t ° c
~)u’ in the 

column vector s~. Then the friction vector is adjusted 

using γ(n+1) = γn − ρ(r~n − r)./ s~n, where ./ is the symbol 
for piecewise division. The estimated commuting flows are 
recalculated before adjusting the proximity-preferences 
using δ(n+1) = δn − ρ(p~n − p)./ p~n. Also in Model  2 ρ = 1. 
Before iterating, the estimated commuting flows are 
recalculated once more.

4.2.1 The Matlab program

You find the program for Model  2 in Appendix  3 (see 
Supplementary material), and it is also available for 
downloading at www.his.se/commuting. The overall structure 
of the program is the same as for Model 1. However, Model 2 
uses more spatial information. Therefore the k, l, and m 
matrices are also read from the Excel file. With them the 
new necessary vectors p and r are calculated. In the main 
part of the program, the parameters are adjusted. First, the 
distance-friction vector is adjusted in relation to the relevant 
constraint deviation. In this part s is calculated. Second, the 
proximity-preference vector is adjusted. This is the same as 
the adjustment procedure used in Model 1. A comment on 
notation: In the text for example s~2 refers to the second value 
in s~. In the Matlab program s_tilde(2) does that job. This is 
the principle used for any vector or matrix.

4.2.2 Results

In Figure 6 you find the distance-friction parameters per 
iteration. In Figure  7 you find the proximity-preference 
parameters per iteration. At the start the distance-
friction parameters are set to zero, and the proximity-
preferences are 9.1832, 5.9328, and 2.4734, for commuting 
within a municipality (i.e. local), commuting between 
municipalities within a region (i.e. regional) and between 
regions, respectively. The solution for the distance-friction 
parameters are  0.0294,  0.1027, and  0.0483. The solutions 
for the proximity-preference parameters are 9.6335, 8.5289, 
and 6.1309.

Fig. 6: Distance-friction parameter convergence
Source: author´s elaboration

Fig. 7: Proximity-preference parameter convergence
Source: author´s elaboration
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In Figure 8 you find the proximity preference and distance 
friction pairs from the start to the solution. Here the 
convergence process starts from points along the x-axis. In 
Fig. 9, you find the value of the dual function per iteration.

The solution is found after about  15  iterations. Then 
nothing much happens to the parameters and the value 
of the dual function. At the solution, the value of the dual 
function is smaller for Model  2 compared to the value for 
Model  1. This is expected, since Model  2 enforces more 
constraints. The first two models are only presented as 
the way to the final model. However, we can compare 
the results from Model  1 and Model  2 anyway. Both the 
proximity-preference parameter and the distance-friction 
parameter are higher in Model  1. Model  1 replicates the 
commuting pattern (Fig. 1) with one exponential function. 
The proximity-preference parameter is related to the 
intersection with the y-axis. The distance-friction parameter 
is related to the decline of commuting as commuting time is 
increased. This is illustrated in in Figure 10 by the dotted 

line. Model 2 replicates the pattern using three exponential 
functions. This is seen in Figure  10 as one solid line for 
commuting within the home municipality, one solid line 
for commuting between municipalities within the home 
region, and one solid line for commuting between regions. 
Model  3  has  582  unique constraints. In that model, the 
pattern is replicated using 20,781 (out of maximum 83,521) 
exponential functions.

4.3 Model 3
Model 2 has three distance-friction parameters and three 

proximity-preference parameters. Those parameters (and 
constraints) are also present in Model  3, but in addition 
Model  3 also has commuting origin- and destination 
constraints. The third model is max L(c~, α, β, δ, γ) = ∑8

s=0 
Ls, where the Lagrangian parts, Ls, are found in (8)–(16). 
Model 2 has three constraints for the amount of commuting, 
and they are included in the same way in Model 3, (11)–(13). 
Model 2 has three time constraints, and they are included 
in the same way in Model 3, (14)–(16). Model 3 in addition 
enforces that the estimated number of workers that live 
in each municipality is equal to the observed number, 
o = cu' = c~u'. This adds 289 origin constraints, (9). However, 
only 288 origin constraints provide new information. The 
three constraints on the number of commuters together 
enforce that the estimated number of commuters is equal 
to the observed working population. This makes the 289th 
origin constraint redundant, since it will be enforced by 
the other constraints. To each origin constraint there is a 
Lagrangian multiplier which is called a push factor. They are 
collected in the column vector α. Because of programming 
convenience all  289  destination constraints are used, but 
one origin is used as base, here α1 = 0. Model 3 also enforces 
that the estimated number of jobs in each municipality is 
equal to the observed number of jobs, d = uc = uc~. This 
adds  289  destination constraints,  (10). As for the origin 
constraints, one of the destination constraints is redundant, 
since only 288 destination constraints provide information. 
To each destination constraint there is a Lagrangian 
multiplier which is called a pull factor. They are collected 
in the row vector β. Because of programming convenience 
all  289  destination constraints are used, but one pull 
factor is used as base, here β1 = 0. The complete model 
now has 582 constraints. This is the setup in the Matlab 
program in Appendix 4 (see Supplementary material).

L0 = − u(c~ ° ln(c~) – c~)u'	 			   (8)

L1 = u(α ° (c
~u' − o))				    (9)

L2 = (β ° (uc~ − d))u'			   (10)

L3 = δ1(u(k ° c
~)u' − p1)			   (11)

L4 = δ2(u(l ° c
~)u’ − p2)			   (12)

L5 = δ3(u(m ° c
~)u’ − p3)			   (13)

L6 = γ1(r1 − u(k ° c
~ ° t)u')			   (14)

L7 = γ2(r2 − u(l ° c
~ ° t)u')			   (15)

L8 = γ3(r3 − u(m ° c
~ ° t)u')		  (16)

The program needs reasonable start values. It is assumed 
that all distance-friction parameters, push- and pull factors 
are zero. The start values for the proximity preferences 
are δ1 = ln(p1 / u(k ° z)u')), δ2 = ln(p2 / (u(l ° z)u')), and  
δ3 = ln(p3 / (u(m ° z)u')), respectively, which is exactly the 
same as is used in Model 2.

Fig. 8: The paths to the solution 
Source: author´s elaboration

Fig. 9: The value of the dual function per iteration 
Source: author´s elaboration

Fig. 10: The principal result of Model 1 and Model 2
Source: author´s elaboration
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The partial derivative of the Lagrangian with respect 
to commuting gives the estimated commuting matrix 
c~ = exp(αu + u'β + δ1k + δ2l + δ3m – (γ1k + γ2l + γ3m) ° t) 
Inserting this into the Lagrangian gives the 
dual form, min D(α,β,γ,δ), where D(α,β,γ,δ) = u 
exp(αu + u’β + δ1k + δ2l + δ3m – (γ1k + γ2l + γ3m) ° t)
u' – α'o – βd' – δ'p + γ'r.

Model 3 has four groups of parameters, and each group 
is adjusted separately. In the program the push factors are 
adjusted first. The origin constraints are constraints on 
the number of commuters. In that way they are similar 
to the three constraints on the number of commuters 
within the home municipality, between municipalities 
within the home region, and between regions. Therefore, 
how to adjust the push factors are easily inferred. The 
push factors are adjusted using α(n+1) = αn – ρ(o~n – o)./ o~n . 
After recalculating the estimated commuting flows the pull 
factors are adjusted, β(n+1) = βn – ρ(d

~
n – d)./ d

~
n , in a similar 

way. The estimated commuting flows are recalculated 
before the distance-friction vector is adjusted. At the end 
of the iteration, the proximity-preference vector is adjusted 
and the estimated commuting flows are recalculated once 
more. The distance-friction vector and the proximity-
preference vector are adjusted as described above in 
Model 2. Compared to the previous models, Model 3 is more 
complex. In Model 3 the number of constraints is larger, and 
the constraints are interwoven. For that reason the relative 
adjustment factor is reduced for convergence, ρ = 0.2. It is 
possible to rerun the program for other adjustment factors, 
and trace the way to the solution in each case.

4.3.1 The Matlab program

You find the Matlab program for Model 3 in Appendix 4 
(see Supplementary material). This program is also available 
to download from www.his.se/commuting. The program 
has grown to include the adjustment of the push and pull 
factors. In the main part of the program, the parameters 
are adjusted. First, the push factors are adjusted. Second, 
the pull factors are adjusted. Third, the distance-friction 
parameter vector is adjusted. Fourth, the proximity-
preference parameter vector is adjusted. After a set of 
parameters has been adjusted, the estimated commuting 
flows are recalculated. In the program it is convenient to 
keep all  289  push factors and  289  pull factors. Hence, 
all 289 factors are adjusted using the same procedure, but 
then one of each factor is set to zero.

4.3.2 Results

At the solution, the distance-friction parameter for 
commuting within a municipality is  0.0248, the distance-
friction parameter for commuting between municipalities 
within a region is  0.0958, and the distance-friction 
parameter for commuting between regions is 0.0514. You 
find the convergence process for the distance-friction 
parameters in Figure 11.

At the solution, the proximity-preference parameter for 
commuting within a municipality is 8.5147, the proximity-
preference parameter for commuting between municipalities 
within a region is  7.4679, and the proximity-preference 
parameter or commuting between regions is  5.4938. 
The convergence processes for the proximity-preference 
parameters are illustrated in Figure  12. In Figure  13 the 
proximity-preference parameter and distance-friction 
parameter pairs from the start (along the x-axis) to the 
solution are illustrated. In the background, the  288  push 
and 288 pull factors are adjusted as well.

You find the value of the dual function per iteration in 
Fig. 14. Little happens to the parameter values and value of 
the dual function after 200 iterations. However, by iterating 
more the solution is pinpointed. The program is set to 
do  500  iterations. The solution value of the dual function 

Fig. 11: Distance-friction parameter convergence
Source: author´s elaboration

Fig. 12: Proximity-preference parameter convergence 
Source: author´s elaboration

Fig. 13: The paths to the solution 
Source: author´s elaboration

Fig. 14: The value of the dual function per iteration 
Source: author´s elaboration
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is smaller for Model  3. This is as expected, since Model  3 
enforces many additional constraints.

4.4 Model 3 alternatives
In Model  3 the first municipality is used as base case, 

and hence both α1 and β1 are set to zero. Then, every other 
parameter is estimated in relation to them. Of course, any other 
municipality could serve as base. Using another municipality as 
base implies setting two other parameters to zero. This would 
give other solution push factors, pull factors, and proximity-
preference parameters. It is their combined effect that is 
interesting. The combined effect remains the same in all cases. 
Moreover, the distance-friction vector is the same in all cases.

Another alternative would be to for example set β1 
and δ3 to zero. Then the model has 289 origin constraints, 
and 289 push factors. To find start values all pull factors, 
all distance-friction parameters, and the two proximity-
preference parameters are set to zero. Then it follows 
that α0 = ln(o / 289) in the case that all destinations are 
included for all origins. In this study the commuting time 
from a municipality should be smaller than  150  minutes 
in order for a destination to be included in the commuting 
zone. Then the start values are α0 = ln(o./ (zu')). Obviously, 
you could have chosen another of the pull factors and 
push factors instead of β1 and another of the proximity 
preferences instead of  δ3. This would give other push 
factors, pull factors, and proximity preference parameters. 
However, their combined effect is the same, nevertheless. 
The proximity-preference vector differs between model 
set ups, however the proximity-preference parameter 
differences are maintained in all set ups. Moreover, the 
distance-friction vector is the same in all cases.

Sometimes you see studies that set no parameter value 
to zero, i.e. all constraints are used, even though in Model 3 
two constraints contain no new information. This works, 
since the parameters are estimated in relation to each other. 
In such a case, there are several sets of feasible start values 
to choose from. The solution push factors, pull factors, 
and proximity-preference parameters change with start 
values. However, this procedure gives the same parameter 
estimates for distance friction and proximity-preference 
parameter differences. Still, it is not good practice to include 
constraints with no information. Under such circumstances 
one needs to be careful when interpreting the results. When 
that is done properly, you find that the results are the same 
as you get if you only use constraints with real information.

4.5 Model comparisons
In this paper, three models of commuting have been 

presented. The idea was to start from a simple model, and 
gradually add spatial constraints to the model to better 
capture reality. It is interesting to see how well the models 
estimate the observed commuting pattern.

In Tables 4–6, you find descriptive statistics for (c.)⁄c ̃  
for Model 1–3, respectively. For example, the median value 
for observed commuting as a share of estimated commuting 
within a municipality is  1.7, for Model  1 (Tab.  4). The 
corresponding median values for Model  2 and Model  3 
are 0.5 (Tab. 5) and 1.0 (Tab. 6), respectively. Note that the 
median gets closer and closer to one. This is the case also 
for commuting between municipalities within a region, and 
for commuting between regions. It is also the case that the 
standard deviation is smaller in Model  3 than in Model  1. 
Model 3 has many more constraints and therefore performs 
better. This is also seen by that the means converge.

In Table 6, the standard deviation is relatively large for 
commuting between regions. One possible explanation for 
this is that there are some links that deviate from the pattern 
due to commuting by other means than car, i.e. train. Such 
flows are not accurately captured in this model.

5. Discussion and conclusion
Given the third model, you can create a version of the 

model by altering the set-up. You could for example just 
use one commuting time constraint instead of three. 
That means that you estimate only one distance-friction 
parameter. You could also remove the constraints for the 
number of commuters within a municipality, between 
municipalities within a region, and between regions. 
That means that you estimate no proximity-preference 
parameters. In such a version of the model, you must allow 
all 289 push- and pull-factors to adjust using the described 
procedure. The resulting distance-friction parameter 
is  0.1406. For this version of the model the median 
number of c / c~ is  2.0,  0.5,  31.0 for commuting within a 
municipality, between municipalities within a region, and 
between regions, respectively. This can be compared to the 
corresponding numbers for Model 3 in Table 6. 

As expected, Model  3 outperforms a version of the 
model using less constraints. It is also possible to alter 
Model  3 in other ways. Model  3 uses  20,781  links out of 
the maximum 83,521 links, and some of those links are not 
active (Table 2). It is straight forward to change the code 
such that only the 12,287 active links out of the 20,781 links 

Tab.  4: Descriptive statistics for the predictive 
performance of Model 1. Source: author´s calculation

Tab.  5: Descriptive statistics for the predictive 
performance of Model 2. Source: author´s calculation

Tab.  6: Descriptive statistics for the predictive 
performance of Model 3. Source: author´s calculation

Measure Within 
municipality

Within 
region

Between 
regions

Min 0.2 0.0 0.0

Median 1.7 0.1 8.9

Mean 62.0 0.7 1,298

Max 6,472 59.4 655,370

Std. dev. 447.6 2.7 11,985

Measure Within 
municipality

Within 
region

Between 
regions

Min 0.1 0.0 0.0

Median 0.5 0.3 0.7

Mean 1.0 1.2 3.3

Max 21.6 90.5 687.8

Std. dev. 1.8 3.9 16.7

Measure Within 
municipality

Within 
region

Between 
regions

Min 0.8   0.0     0.0

Median 1.0   0.6     0.8

Mean 1.1   0.9     2.6

Max 2.8 31.4 661.1

Std. dev. 0.2   1.5   10.5
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are used (c~ (c = = 0) =0). The resulting estimates for the 
distance-friction parameters do not differ much between 
these two versions of Model 3. Nothing prevents us from 
adding more constraints to Model  3. You could add, for 
example, housing expenditure and income constraints. 
Such models and results are discussed in Olsson (2015).

Hopefully, this paper has stimulated you into modelling 
spatial interaction. When a model like Model  3 has been 
solved, you have a set of distance-friction parameters. With 
them you can calculate accessibility measures to incorporate 
spatial aspects into different types of studies (e.g. the 
literature presented in the Introduction). Let us assume 
that we want to look at the accessibility to workers. This 
would be one important variable to consider when studying, 
for example, how easy it is to find someone to fill a vacancy. 
Johansson et al. (2002, 2003) suggest that one separates the 
total accessibility into three parts: accessibility within the 
municipality, accessibility in other municipalities within 
the region, and accessibility in other regions. Such spatial 
decomposition of the total accessibility is useful in empirical 
studies, since they likely are of unequal importance. In 
this study, the commuting pattern was in focus. But not all 
persons work, e.g. the unemployed, the retired, students, 
etc. The non-working part of the population also interacts 
spatially. Although not part of this study, such spatial 
interactions are also interesting to model. Moreover, those 
individuals are often included in the accessibility measures 
(e.g. as potential workers or customers, depending on the 
focus of the study). Such a spatial decomposition, moreover, 
does not acknowledge that competition also varies across 
locations. Geurs and van Wee  (2004) identified several 
ways to introduce competition aspects into the accessibility 
measures, and one way would be to use the balancing factors 
of the solution to the gravity model (from α and β).
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