Innovative Adaptive Control of Material Fatigue Test Machines Using an MCS Controller

Open access

Abstract

The paper presents some issues related to the control of fatigue test machines based on W(t) parameter taking into account the simultaneous interaction of stress and strain. This parameter is defined as a product of these values. Such a research method represents a new approach in fatigue testing with an innovative control system. Because of the W(t) function characteristics, the system presents nonlinear behavior and there is a significant deterioration of the control quality and the controlled signal significantly differs from the reference signal waveform. This problem can be solved by introducing a nonlinear block into the feedback loop. Fatigue tests have been carried out for sinusoidal and randomized reference signal waveforms. These tests have proved that the controlled signal follows reference values with an appropriate control quality.

Gluza, W. and Kalinowski, K. (2009). Układ automatycznej stabilizacji gęstości energii odkształcenia do oceny wytrzymałości zmęczeniowej materiału w ujęciu energetycznym. Patent nr 203885, 22.05.2009 (in Polish).

Kalinowski, K., Heyduk, A., Kaula, R. and Pielot, J. (2004). Cyfrowe sterowanie maszyn do badań wytrzymałościowych. Gliwice: Wydawnictwo Politechniki Śląskiej. (in Polish).

Kasprzyczak, L. and Macha, E. (2007). Cyfrowe układy sterowania maszyn wytrzymałościowych. Problemy Maszyn Roboczych, z.29, pp. 53-61

Kasprzyczak, L. and Macha, E. (2008). Selection of settings of the PID controller by automatic tuning at the control system of the hydraulic fatigue stand. Mechanical Systems and Signal Processing, Vol. 22, pp. 1274-1288.

Łagoda, T., Macha, E. and Będkowski, W. (1999). A critical plane approach based on energy concepts: application to biaxial random tension compression high-cycle fatigue regime. International Journal of Fatigue, Vol. 21, No. 5, pp. 431-443.

Łagoda, T. (2001a). Energy models for fatigue life estimation under uniaxial random loading - part I - The model elaboration International Journal Fatigue, Vol. 23, No.6 pp. 467-480.

Łagoda, T. (2001b). Energy models for fatigue life estimation under random loading - part II - Verification of the model. International Journal Fatigue, Vol. 23, No.6 pp. 481-489.

Macha, E., Slowik, J. and Pawliczek, R. (2009). Energy Based Characterization of Fatigue Behaviour of Cyclically Unstable Materials. Solid State Phenomena, Vol. 147-149, pp. 512-517.

Pereira-Dias, D., Costa, R.R. and Jacoud, A. (2013). Control of hydraulic actuated fatigue testing machines - a review. In: 22nd International Congress of Mechanical Engineering (COBEM 2013), Nov. 3-7, Ribeirão Preto, SP, Brazil, pp. 9370-9381

Rozumek, D. and Marciniak, Z. (2008). Control system of the fatigue stand for material tests under combined bending with torsion loading and experimental results. Mechanical Systems and Signal Processing, Vol. 22, 1289-1296.

Rozumek, D., Marciniak, Z. and Lachowicz C. (2010). The energy approach in the calculation of fatigue lives under non-proportional bending with torsion. International Journal of Fatigue, Vol. 32, pp. 1343-1350.

Stoten, D. and Benchoubane, H. (1990a). Empirical studies of MRAC algorithm with minimal controller synthesis. Int. Journal Control, Vol. 51, N. 4, pp. 823-849.

Stoten, D. and Benchoubane, H. (1990b), Robustness of a minimal controller synthesis algorithm. Int. Journal Control, Vol. 51, N. 4, pp. 851-861.

Stoten, D. and Benchoubane, H. (1993), The minimal control synthesis identification algorithm. Int. Journal Control, Vol. 58, N. 3, pp. 685-696.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 6
PDF Downloads 55 55 13