Pharmacokinetic Behavior of Marbofloxacin in Plasma from Chickens at Different Seasons

Open access

Abstract

The purpose of this study was to evaluate the differences in the disposition and plasma pharmacokinetic behavior of marbofloxacin (MAR) in broiler chickens at different seasons. Chicken broilers (n = 345) were used, in lots of 5 individuals, divided into 6 groups depending on the way of administration, intravenous or oral (dose 2 mg/kg) and the test period. Post-administration plasma samples were obtained at different times, intravenously (0.08 to 24 hours) and orally (0.25 to 120 hours). A liquid-liquid extraction of MAR was performed by high-performance liquid chromatography (HPLC) with a fluorescent detector. The plasma concentrations obtained at the different sampling times of each season, were analyzed with ANOVA and pharmacokinetic analysis was conducted with the PK Solution 2.0 software. The concentration of marbofloxacin in plasma was significantly lower in winter and summer than in spring, with MAR being detected in winter up to 72 hours post-application, coinciding with the differences in MAR pharmacokinetics parameters with increase in the average residence time (MRT) is 9.4 hours in winter. Increased clearance MAR in summer (7.5 ml/min/kg) coincides with MRT 6.3 hours. Finally, the oral bioavailability of MAR is lower in summer and winter (86 ± 1.7% and 78 ± 3.1%) than in spring (94 ± 5.2 %). There are differences in the disposition and plasma pharmacokinetic behavior of MAR applied orally in broiler chickens, coinciding with the physiological changes in the thermoregulation of birds, considering its correct therapeutic management and contributing to provide safe food for human consumption.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Anadón A. Martínez-Larraga-a M. Fernández-Cruz M. (1993). Physiological and pharmacological considerations in aviary therapy. Rev. Med. Vet. 144 (10): 745-757.

  • 2. Landoni M. Albarellos G. (2015). The use of antimicrobial agents in broiler chickens. Vet. J. 205 21-27. https://doi.org/10.1016/j.tvjl.2015.04.016 PMid:25981931

  • 3. Hofacre C. (2007). Antimicrobial drug use in poultry. In: B.D. Gigueré S. Prescott (Eds.) An antimicrobial therapy in veterinary medicine (pp. 545-553). Iowa: Blackwell Pub.

  • 4. Ding H. Wang L. Shen X. Gu X. Zeng D. Zeng Z. (2013). Plasma and tissue pharmacokinetics of marbofloxacin in experimentally infected chickens with Mycoplasma gallisepticum and Escherichia coli. J. Vet. Pharmacol. Ther. 36 511-515. https://doi.org/10.1111/jvp.12049 PMid:23550715

  • 5. El-Komy A. Attia T. El Latif A. Fathy H. (2016). Bioavailability pharmacokinetics and residues of marbofloxacin in normal and E. coli infected broiler chicken. In. J. Pharmacol. Tox. 2 (4): 144-149.

  • 6. Huang X. Chen Z. Zhang S. Zeng Z. (2003). Influence of experimentally Pasteurella multocida infection on the pharmacokinetics of marbofloxacin in broiler chickens. Acta Veterinaria et Zootechnica Sinica 34 98-102.

  • 7. Anadón A. Martínez-Larraga-a M. Días M. Martínez M. Frejo M. Martínez M. Tafur M. Castellano. V. (2002). Pharmacokinetic characteristics and tissue residues for marbofloxacin and its metabolite N-desmethyl-marbofloxacin in broiler chickens. AJVR. 63 927-933. https://doi.org/10.2460/ajvr.2002.63.927

  • 8. Yuan L. Wang R. Sun L. Zhu L. Luo X. Sun J. Fang B. Liu Y. (2010). Pharmacokinetics of marbofloxacin in Muscovy duck (Cairina moschata). J. Vet. Pharmacol. Ther. 34 82-85. https://doi.org/10.1111/j.1365-2885.2010.01207.x PMid:21219349

  • 9. Martinez M. Modric S. (2009). Patient variation in veterinary medicine: Part I. Influence of altered physiological states. J. Vet. Pharmacol. Ther. 33 213–226. https://doi.org/10.1111/j.1365-2885.2009.01139.x PMid:20557438

  • 10. Martinez M. Modric S. (2010). Patient variation in veterinary medicine: Part II. Influence of physiological variables. J. Vet. Pharmacol. Ther. 34 209–223. PMid:21083665

  • 11. Toutain P. Ferran A. Bousquet-Mélou A. (2010). Species differences in pharmacokinetics and pharmacodynamics. In: F. Cunningham J. Elliott P. Lees (Eds.) Comparative and veterinary pharmacology (pp. 19-48). Francia: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10324-7_2

  • 12. Böttcher S. Baum H. Hoppe-Tychy T. Benz C. (2001). An HPLC assay and a microbiological assay to determine levofloxacin in soft tissue bone bile and serum. J. Pharm. Biomed. Anal. 25 197-203. https://doi.org/10.1016/S0731-7085(00)00478-7

  • 13. Urzúa N. Errecalde C. Prieto G. Lüders C. Picco E. Paula Tonini M. (2016). Plasma pharmacokinetics and muscle disposition of marbofloxacin in chickens. IJVM. 1 1-6.

  • 14. Farrier D.S. (1999). PK Solutions 2.0 Noncompartmental pharmacokinetics. Data analysis. Ashland USA.

  • 15. Toutain P. Bousquet-Mélou A. (2004). Bioavailability and its assessment. J. Vet. Pharmacol. Ther. 7 455-466. https://doi.org/10.1111/j.1365-2885.2004.00604.x PMid:15601440

  • 16. Di Rienzo J. Casanove F. Balzarini M. Gonzales L. Tablada M. Robledo C. (2016). InfoStat versión 2016. Group InfoStat. FCA. Universidad Nacional de Cordoba. Argentina. www.infostat.com.ar

  • 17. Scholar E. (2002). Fluoroquinolones: past present and future of a novel group of antibacterial agents. Am. J. Pharm Educ. 66 164-172.

  • 18. Estrada P. Márquez G. (2005). Interactions of environmental factors with productive behavior response in broiler chickens. Colombian Journal of Animal Sciences 18 256-273.

  • 19. Whittow G. (1976). Regulation of body temperature. In: P.D Sturkie (Ed.) Avian Physiology (pp. 152-189). New York Inc: Springer-Verlag. https://doi.org/10.1007/978-3-642-96274-5_7

  • 20. Hai L. Rong D. Zhang Z. (2000). The effect of thermal environment on the digestion of broilers. J. Anim. Physio. Anim. Nutr. 83 57-64. https://doi.org/10.1046/j.1439-0396.2000.00223.x

  • 21. Quinteiro-Filho W. Rodrigues A. Ribeiro V. Ferraz-de-paula M. Pinheiro L. Palermo-neto J. (2010). Acute heat stress impairs performance parameter sand induces mild intestinal enteritis in broiler chickens: Role of acute HPA axis activation. J. Anim. Sci. 90 1986–1994. https://doi.org/10.2527/jas.2011-3949 PMid:22228037

  • 22. Yahav S. (2015). Regulation of body temperature: strategies and mechanisms. In: G. Colin (Ed.) Sturkie’s Avian Physiology (pp. 869-897). London: Elsevier. https://doi.org/10.1016/B978-0-12-407160-5.00037-3

  • 23. Nawaz M. Nawaz R. (1983). Pharmacokinetics and urinary excretion of sulphadimidine in sheep during summer and winter. Vet Rec. 16 379-381. https://doi.org/10.1136/vr.112.16.379

  • 24. Sun M. Li J. Gai C. Chang Z. Li J. Zhao F. (2014). Pharmacokinetics of difloxacin in olive flounder Paralichthysolivaceus at two water temperatures. J. Vet. Pharmacol. Ther. 37 186-191. https://doi.org/10.1111/jvp.12062 PMid:23742101

Search
Journal information
Impact Factor
CiteScore 2018: 0.45

SCImago Journal Rank (SJR) 2018: 0.193
Source Normalized Impact per Paper (SNIP) 2018: 0.328

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 229 138 6
PDF Downloads 100 70 1