Relation Between Microclimate and Air Quality in the Extensively Reared Turkey House

Mario Ostović 1 , Sven Menčik 2 , Ivica Ravić 3 , Slavko Žužul 1 , Željko Pavičić 1 , Kristina Matković 1 , Boris Antunović 4 , Danijela Horvatek Tomić 5 ,  and Anamaria Ekert Kabalin 2
  • 1 Department of Animal Hygiene, Behaviour and Welfare, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
  • 2 Department of Animal Husbandry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
  • 3 Veterinary Department, , Mostar, Bosnia and Herzegovina
  • 4 Department of Animal Husbandry, Faculty of Agriculture, Josip Juraj Strossmayer University, Osijek, Croatia
  • 5 Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia


Good air quality in poultry houses is crucial for animal health and productivity. In these houses, air is generally contaminated with noxious gases and microorganisms, the concentrations of which depend on numerous factors including microclimate. In this case study, the relation between microclimate and air concentrations of noxious gases and microorganisms was investigated in extensively reared turkey house. The study was carried out at a family household in Dalmatia hinterland, Croatia, with 50.3±3.1 turkeys kept in the house during the study period. Air temperature, relative humidity, airflow rate, concentrations of ammonia, carbon dioxide, bacteria and fungi in indoor air were measured three times per month from September to December, in the morning, prior to releasing turkeys out for grazing. Air temperature ranged from 9.73 to 26.98 °C, relative humidity from 63.29% to 75.08%, and airflow rate from 0.11 to 0.17 m/s. Lowest ammonia and carbon dioxide concentrations were measured in September (2.17 ppm and 550 ppm, respectively) and highest in December (4.50 ppm and 900 ppm, respectively). Bacterial and fungal counts were lowest in December (2.51×105 CFU/m3 and 3.27×103 CFU/m3 air, respectively) and highest in September (6.85×105 CFU/m3 and 1.06x105 CFU/m3 air, respectively). Air temperature and relative humidity showed negative correlation with concentrations of noxious gases and positive correlation with air microorganisms (P<0.05 all).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ekert Kabalin, A., Menčik, S., Ostović, M., Štoković, I., Grgas, A., Horvath, Š., Balenović, T., Sušić, V., Karadjole, I., Pavičić, Ž. (2012). Morphological characteristics of Dalmatian turkey: preliminary results. Maced J Anim Sci. 2, 277-280.

  • 2. Maurić, M., Starčević, K., Menčik, S., Ostović, M., Ekert Kabalin, A. (2016). Influence of meat type, sex and storage time on fatty acid profile of free range Dalmatian turkey. Mac Vet Rev. 39, 167-174.

  • 3. Ekert Kabalin, A., Menčik, S., Ostović, M., Kabalin, H., Balenović, M., Balenović, T., Štoković, I., Sušić, V., Starčević, K., Maurić, M. (2013). Tissue share in the breast, thighs and drumsticks of turkeys from Dalmatian hinterland. Stočarstvo. 67, 9-16. (in Croatian)

  • 4. Cargill, C., Murphy, T., Banhazi, T. (2002). Hygiene and air quality in intensive housing facilities in Australia. Anim Prod Aust. 24, 387-393.

  • 5. Dalólio, F.S., da Silva, J.N., Albino, L.F.T., Moreira, J., Mendes, L.B. (2015). Air pollution and their mitigation measures in Brazilian poultry production. Afr J Agric Res. 10, 4522-4531.

  • 6. Ritz, C.W., Fairchild, B.D., Lacy, M.P. (2004). Implications of ammonia production and emissions from commercial poultry facilities: A review. J Appl Poult Res. 13, 684-692.

  • 7. Olanrewaju, H.A., Dozier, W.A., Purswell, J.L., Branton, S.L., Miles, D.M., Lott, B.D., Pescatore, A.J., Thaxton, J.P. (2008). Growth performance and physiological variables for broiler chickens subjected to short-term elevated carbon dioxide concentrations. Int J Poult Sci. 7, 738-742.

  • 8. Ni, J.-Q., Heber, A.J., Hanni, S.M., Lim, T.T., Diehl, C.A. (2010). Characteristics of ammonia and carbon dioxide releases from layer hen manure. Br Poult Sci. 51, 326-334. PMid:20680867

  • 9. Matković, K., Vučemilo, M., Vinković, B. (2012). Dust and endotoxin in laying hen dwellings. Turk. J. Vet. Anim. Sci. 36, 189-195.

  • 10. Zhao, Y., Aarnink, A.J.A., de Jong, M.C.M., Groot Koerkamp, P.W.G. (2014). Airborne microorganisms from livestock production systems and their relation to dust. Crit Rev Env Sci Tec. 44, 1071-1128.

  • 11. Skóra, J., Matusiak, K., Wojewódzki, P., Nowak, A., Sulyok, M., Ligocka, A., Okrasa, M., Hermann, J., Gutarowska, B. (2016). Evaluation of microbiological and chemical contaminants in poultry farms. Int J Environ Res Public Health. 13, 192-207. PMid:26861361 PMCid:PMC4772212

  • 12. Vučemilo, M., Matković, K., Vinković, B., Jakšić, S., Granić, K., Mas, N. (2007). The effect of animal age on air pollutant concentration in a broiler house. Czech J Anim Sci. 52, 170-174.

  • 13. Knížatová, M., Mihina, Š., Brouček, J., Karandušovská, I., Sauter, G.J., Mačuhová, J. (2010). Effect of the age and season of fattening period on carbon dioxide emissions from broiler housing. Czech J Anim Sci. 55, 436-444.

  • 14. Bródka, K., Kozajda, A., Buczyńska, A., Szadkowska-Stańczyk, I. (2012). The variability of bacterial aerosol in poultry houses depending on selected factors. Int J Occup Med Environ Health. 25, 281-293. PMid:22729495

  • 15. Prodanov, M., Radeski, M., Ilieski, V. (2016). Air quality measurements in laying hens housing. Mac Vet Rev. 39, 91-95.

  • 16. Wójcik, A., Chorąży, L., Mituniewicz, T., Witkowska, D., Iwańczuk-Czernik, K., Sowińska, J. (2010). Microbial air contamination in poultry houses in the summer and winter. Polish J Environ Stud. 19, 1045-1050.

  • 17. Matković, K., Vučemilo, M., Štoković, I., Šimić, R., Marušić, D., Vinković, B., Matković, S. (2013). Concentrations of airborne bacteria and fungi in a livestock building with caged laying hens. Vet arhiv. 83, 413-424.

  • 18. Pavičić, Ž., Ostović, M. (2007). Turkey breeding. Hrvat vet vjesn. 30, 185-194. (in Croatian)

  • 19. Vučemilo, M. (2008). Hygiene and bioecology in poultry farming. Zagreb: Faculty of Veterinary Medicine, University of Zagreb. (in Croatian)

  • 20. Osorio, J.A., Tinoco, I.F., Ciro, H.J. (2009). Ammonia: A review of concentration and emission models in livestock structures. Dyna. 76, 89-99.

  • 21. Glatz, P., Rodda, B. (2013). Turkey farming: Welfare and husbandry issues. Afr J Agric Res. 8, 6149-6163.

  • 22. Knížatová, M., Brouček, J., Mihina, Š. (2010). Seasonal differences in levels of carbon dioxide and ammonia in broiler housing. Slovak J Anim Sci. 43, 105-112.

  • 23. Kilic, I., Yaslioglu, E. (2014). Ammonia and carbon dioxide concentrations in a layer house. Asian Australas J Anim Sci. 27, 1211-1218. PMid:25083117 PMCid:PMC4109879

  • 24. Nimmermark, S., G. Gustafsson (2005). Influence of temperature, humidity and ventilation rate on the release of odour and ammonia in a floor housing system for laying hens. Agric Eng Int: CIGR J Sci Res Dev. 7, Manuscript BC 04 008. PMid:16259426

  • 25. Carr, L.E., Wheaton, F.W., Douglass, L.W. (1990). Empirical models to determine ammonia concentrations from broiler chicken litter. T ASAE. 33, 1337-1342.

  • 26. Brouček, J., Čermak, B. (2015). Emission of harmful gases from poultry farms and possibilities of their reduction. Ekol Bratislava. 34, 89-100.

  • 27. David, B., Mejdell, C., Michel, V., Lund, V., Moe, R.O. (2015). Air quality in alternative housing systems may have an impact on laying hen welfare. Part II - Ammonia. Animals. 5, 886-896.

  • 28. Zhao, Y., Shepherd, T.A., Li, H., Xin, H. (2015). Environmental assessment of three egg production systems-Part I: Monitoring system and indoor air quality. Poult Sci. 94, 518-533. PMid:25737567 PMCid:PMC4990888

  • 29. Miles, D.M., Owens, P.R., Rowe, D.E. (2006). Spatial variability of litter gaseous flux within a commercial broiler house: Ammonia, nitrous oxide, carbon dioxide, and methane. Poult Sci. 85, 167-172. PMid:16523609

  • 30. Seedorf, J., Hartung, J., Schröder, M., Linkert, K.H., Phillips, V.R., Holden, M.R., Sneath, R.W., Short, J.L., White, R.P., Pedersen, S., Takai, H., Johnsen, J.O., Metz, J.H.M., Groot Koerkamp, P.W.G., Uenk, G.H., Wathes, C.M. (1998). Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in northern Europe. J Agric Engng Res. 70, 97-109.

  • 31. Radon, K., Danuser, B., Iversen, M., Monso, E., Weber, C., Hartung, J., Donham, K., Palmgren, U., Nowak, D. (2002). Air contaminants in different European farming environments. Ann Agric Environ Med. 9, 41-48. PMid:12088396

  • 32. Matković, K., Vučemilo, M., Vinković, B. (2009). Airborne fungi in dwellings for dairy cows and laying hens. Arh Hig Rada Toksikol. 60, 395-399. PMid:20061239

  • 33. Debey, M.C., Trampel, D.W., Richard, J.L., Bundy, D.S., Hoffman, L.J., Meyer, V.M., Cox, D.F. (1995). Effect of environmental variables in turkey confinement houses on airborne Aspergillus and mycoflora composition. Poult Sci. 74, 463-471. PMid:7761330

  • 34. Popescu, S., Borda, C., Diugan, E. (2013). Microbiological air contamination in different types of housing systems for laying hens. ProEnvironment. 6, 549-555.

  • 35. Tang, J.W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface. 6, S737-S746.


Journal + Issues