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Based on the V-function method, the properties of wave nature of object 
motion are studied for object uniform motion with constant speed and for 
harmonic oscillator. It follows from the V-function method that object wave 
motion is inseparably linked with its trajectory motion. The V-function method 
consists of the principle of local variation and a new statement of the direct and 
inverse dynamics problems. The proposed approach made it possible to make 
the optico-mechanical analogy that obtained a new continuation. A comparison 
is made with the results obtained by Schrödinger for a harmonic oscillator.
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1. INTRODUCTION

It is known that wave-particle duality is embedded in quantum mechanics. A 
quantum object manifests itself as a particle in some experiments while in other ones 
it behaves like a wave. This duality is fixed in quantum mechanics by the Heisenberg 
uncertainty principle [1]. Moreover, just this circumstance makes it possible to make 
the optico-mechanical analogy (that still remains topical [2]–[4]) based on the existing 
variation principles at a level of geometrical optics only. The continuing attempts to 
understand the paradoxical display of wave-corpuscle duality in electron (and other 
microparticles) motion also promote generation of new theories developing the de 
Broglie’s pilot-wave concept [5]–[8].

In this study, we advance a novel approach (based on the wave-corpuscle 
monism) to explain the quantum object nature. We propose such description of 
physical reality in which trajectory motion of an object is inseparably linked with 
its wave motion. In this case, it is assumed that particle motion is determined by 
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a physical wave V(x, t), and presence of particle trajectories indicates the fact of 
particle existence.

2. MATERIALS AND METHODS

The classical approach used when developing quantum mechanics is based on 
description of reality using only the experimentally observed quantities. The theory 
developed by us is based on the process-state concept introduced to describe the 
essence and mode of electron existence. Such a concept is initially formulated based 
on the dynamism strategy [9] in which motion (process) is the essence of reality, 
while a trajectory (state) is the mode of reality existence. The process-state concept 
made it possible to formulate the principle of local variation and implement a novel 
statement of the direct and inverse dynamics problems [10], [11] that are components 
of the V-function method.

2.1. The V-function Method

Let us introduce a vector of the phase coordinates T
nxxxtx ),...,,()( 21= ; 

nRx∈ , nR  is the n-dimensional Euclidean space, and time Tt∈ . We consider a 
differential equation system:

  (1)

The right-hand sides of f(x) are vector-functions that are continuous in all their 
arguments. They have continuous and module limited partial derivatives . 

Variation of speed (rate) of the V-function change transforms the object from 
some state to a new state. Following is formulation of the principle of local variation: 
Of all the possible transitions to a new state, that one is realized at which the speed 
of wave function V(x, t) change takes stationary value at each instant.

         (2)

Let us consider the total variation of rate of wave function change:

, (3)

where

  
(4)
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It is assumed that the wave function (V-function) is a one-valued finite 
piecewise continuous function satisfying the following equation:

,  (5)

where

)(xfi  are components of the n-variate vector-function of the right-hand sides 
of object motion Eq. (1).

Theorem I. A necessary and sufficient condition for transferring to a new state 
is the existence of V-function such as

  (6)

Theorem II. An object motion Eq. (1) occurs so that at every instant the phase 
velocity vector is codirectional with the wave function gradient, i.e.,

  
(7)

The conclusion from Theorem II is that object motion is operated by a wave 
according to the de Broglie’s pilot-wave concept [5], [6].

2.2. Statement of the Direct and Inverse Dynamics Problems Based on the 
Principle of Local Variation

The direct dynamics problem based on the V-function method is stated as 
follows: It is required to determine the wave function V(x, t) that meets Eq. (5) from 
the specified differential equations describing the trajectory of object motion Eq. (1).

The edge conditions for Eq. (5) are obtained from the connectedness condition 
for the object wave motion with its trajectory motion and from Theorems I and II. 
The connectedness conditions for wave and trajectory specify the initial condition 
for wave function:

  (8)

and the boundary condition for wave function:

   (9)

The two other conditions result from Theorems I and II. From Theorem I
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  (10)

we get:

.   (11)

As a result, the second initial condition for Eq. (5) is as follows:

.  (12)

The following equality results from Theorem II:

 
(13)

The second boundary condition results from the equality Eq. (13):

 
 

(14)

The inverse dynamics problem is specified as follows: It is required to 
determine differential equations of object motion (Eq. (1)) for a known wave function 
V(x, t) that obeys Eq. (5).

For the sake of convenience, let us write Eq. (5) as follows:

  
(15)

Knowing the wave function V(x, t), we obtain from Eq. (7) solution of the 
inverse dynamics problem as

  (16)

It can be shown from Eq. (10) and Theorem II that the following equality takes 
place:
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  (17)

As a result, Eq. (15) becomes

  (18)

The above results are used to make the optico-mechanical analogy and 
simulate trajectory-wave motion of a harmonic oscillator.

3. RESULTS AND DISCUSSION

3.1. Solving the Direct and Inverse Dynamics Problems

Let us consider solving the direct and inverse dynamics problems for object 
uniform motion with constant speed. In this case, Eqs. (1) and (5) are:

        (19)

  (20)

With allowance made for Eq. (19), we obtain from Eq. (20) the classical wave 
equation:

  (21)

for which the conditions Eqs. (8) and (9) remain invariant, while Eqs. (12) and (14) 
become:

  (22)

  (23)

To solve Eq. (21) with the specified edge conditions, we apply the variable 
separation method )()(),( xttxV ψϕ= :
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.       (24)

As a result, the general solution of Eq. (21) is as follows:

  (25)

The constants in Eq. (25) will be expressed through the initial and boundary 
conditions Eqs. (8), (9) and (23), i.e.,

.  (26)

It follows from Eq. (26) that:

 

.      (27)

By substituting the obtained constants into Eq. (25), we get:

.   (28)
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The solution is in the form of a plane wave. In what follows we consider wave 
propagation only in the direction of object motion. Then from Eq. (28) we get the 
V-function as

  (29)

3.2. Continuation of the Optico-mechanical Analogy

Based on the inverse dynamics problem, one can see that the trajectory motion 
of a particle (at n = 1), as follows from Eq. (16), has to satisfy Eq. (20):

   (29)

Thus, all this makes it possible to draw the following analogy between wave 
and particle:

  (30)

It follows from the first relation in Eq. (30) that wave phase velocity is equal 
to particle velocity. It is known from quantum mechanics that group velocity of 
the de Broglie waves is equal to particle velocity. The second relation in Eq. (30) 
shows relationship between particle energy and wave carrier frequency. Based on the 
third relation in Eq. (30), the wavelength l is determined by the particle momentum. 
And this relation coincides with the famous de Broglie relation. As a result, particle 
position is determined by the wave node. In this case, wave guides particle; at the 
same time, particle generates wave.

3.3. A Linear Harmonic Oscillator

Let us consider a linear harmonic oscillator. From Eq. (31) of trajectory motion 
of object (particle):

  (31)

The trajectory motion of object (particle) is joined with wave motion described 
by Eq. (23) and at n = 1 is:
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  (32)

As a result, we get solution as a function of time:

,        (33)

where

  (34)

The object motion speed will be determined from time derivative of this 
solution. 

In our case, separation of variables is performed in such a way:
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 ,   (35)

where λ is a constant. For this we have:

0)(1)( 2 =+′′ xx ψ
l

ψ ,  (36)
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 .  (37)

Let us introduce the dimensionless quantity ; as a result, we obtain:

  (38)

Thus, it follows from Eq. (38) that for harmonic oscillator when the object 
motion speed as a function of time and object motion trajectory are known and wave 
function is superimposed on the trajectory, we get discrete energy values, just as in 
the Schrödinger case [12], [13] for harmonic oscillator. 

Now let us apply the V-function method:

  (39)
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With allowance made for Eq. (39) it becomes:

  (40)

The following equations are obtained from Eq. (40) after separation of 
variables:

  (41)

  (42)

Let us introduce a dimensionless quantity 
k
E

x
2

=ξ
; then Eq. (42) is:

        (43)

where

        (44)

We apply the computer mathematics system Maple to solve Eq. (43). Its 
solution is:

 (45)

The solution of Eq. (42) in this system is as a series:

 

(46)
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It follows from Eq. (46) that continuous solution  has to satisfy the  
 
condition  This condition is fulfilled only at certain discreet values of  
 
proper frequencies:  . 
 
From this we get the following rule of energy quantization for harmonic oscillator:

2
0

2222
1

2
2 22 ω=∆∆=+− ++ nnnn EEEE .     (47)

Therefore, when the trajectory motion of an object is closely related to the wave 
motion, the harmonic oscillator energy can have, as in the Schrödinger case, only 
certain discrete values:       
 
In this case, if the results obtained by Schrödinger ( ) are substituted 
into equality Eq. (47), then we have:

  (48)

i.e., we get an identity. It is known [14], [15] that in real microscopic oscillators 
interacting with light only transitions between the adjacent levels can occur. 

It should be noted that a Wronskian for Eq. (43) is a nonzero constant, i.e., 
from this we get the second linearly independent solution

  (49)

  (50)

It follows from relations that ∞→)(ξψ n  as ∞→ξ . Thus, we obtain from 
Eq. (50) that 0)(~ →ξψ n  as ∞→ξ , i.e., the solution is finite at infinity.

4. CONCLUSIONS

Using the V-function method, we get that particle uniform motion with 
constant speed is joined with wave motion. The obtained wave function has to 
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satisfy the classical wave equation. In this case, if the wave function (V-function) has 
dimension of action ([kg][m/s][m]), then particle energy takes certain discrete values. 
The quantization law becomes the same as the Schrödinger energy quantization law 
for harmonic oscillator.

Thus, based on the V-function method, any trajectory motion of an object is 
inseparably linked with its wave motion. We have considered both direct and inverse 
problems for the case of particle uniform motion with constant speed. The opto-
mechanical analogy is made and accordance between wave and particle is obtained. 
Here the main factor is equality of phase speed of wave and speed of particle motion.

In the case of harmonic oscillator when trajectory motion of particle is not 
related to wave motion, the Schrödinger equation for harmonic oscillator results. 
If trajectory equation is inseparably linked with wave equation, then we get the 
energy quantization rule linking three adjacent levels. This is in agreement with the 
real microscopic oscillators interacting with light. The finite solutions for harmonic 
oscillator are also obtained.
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V-FUNKCIJAS METODE: DAŽI TIEŠĀ UN APGRIEZTĀ DINAMIKAS 
UZDEVUMU RISINĀJUMI JAUNĀ IZKLĀSTĀ

N. T. Vališins, F. T. Vališins

K o p s a v i l k u m s

Pamatojoties uz V-funkcijas metodi, objekta kustības viļņu rakstura īpašības 
pētītas objekta vienādas kustības ar nemainīgu ātrumu un harmoniskā oscilatora 
mērķim. No V-funkcijas metodes izriet, ka objekta viļņu kustība ir nesaraujami saistīta 
ar trajektorijas kustību. V-funkcijas metode iekļauj vietējās variācijas principu un 
jaunu tiešā un apgrieztā dinamikas uzdevumu izklāstu. Ierosinātā pieeja ļāva veikt 
optisko un mehānisko analoģiju, kas ieguva jaunu turpinājumu. Salīdzinājums veikts 
ar rezultātiem, ko Šrēdingers ieguva attiecībā uz harmonisko oscilatoru.
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