Numerical Study of Flow-Induced Vibrations of Multiple Flexibly-Mounted Cylinders in Triangular Array

Open access


The paper presents the numerical study of vibrating multiple flexibly-mounted cylinders in a triangular rod bundle. Behavioural trends of six different clusters of oscillating rods have been analysed. The influence of neighbour cylinders on the central cylinder oscillation characteristics is analysed. Finite volume solver of open source computational fluid dynamics is used to calculate the fluid flow in the channel with the cylinder array. Built-in six degree-of-freedoms solver is utilised to simulate cylinder movement. Oscillating cylinders have two degrees-of-freedom. The obtained results are compared with numerical results available in the literature.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Vincent B.T. Hassan M.A. & Rogers R.J. (2009). A probabilistic assessment technique applied to a cracked heat exchanger tube subjected to flow-induced vibration. Journal of Pressure Vessel Technology131 031305-1-6. DOI: 10.1115/1.3109989

  • 2. Weaver D.S. & Fitzpatrick J.A. (1988). A review of cross-flow induced vibrations in heat exchanger tube arrays. Journal of Fluids and Structures2 73–93. DOI: 10.1016/S0889-9746(88)90137-5

  • 3. Khalifa A. Weaver D. & Ziada S. (2012). A single flexible tube in a rigid array as a model for fluidelastic instability in tube bundles. Journal of Fluids and Structures34 14–32. DOI: 10.1016/j.jfluidstructs.2012.06.007

  • 4. de Pedro B. Parrondo J. Meskell C. & Oro J. F. (2016). CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or fluidelastic instability. Journal of Fluids and Structures64 67–86. DOI: 10.1016/j.jfluidstructs.2016.04.006

  • 5. Charreton C. Béguin C. Yu K.R. & Étienne S. (2015). Effect of Reynolds number on the stability of a single flexible tube predicted by the quasi-steady model in tube bundles. Journal of Fluids and Structures56 107–123. DOI: 10.1016/j.jfluidstructs.2015.05.004

  • 6. Mahon J. & Meskell. C. (2013). Estimation of the time delay associated with damping controlled fluidelastic instability in a normal triangular tube array. Journal of Pressure Vessel Technology135 030903-1-7. DOI: 10.1115/1.4024144

  • 7. Price S.J. (1995). A review of theoretical models for fluidelastic instability of cylinder arrays in cross-flow. Journal of Fluids and Structures9 463–518. DOI: 10.1006/jfls.1995.1028

  • 8. Andjelić M. Austermann R. & Popp K. (1992). Multiple stability boundaries of tubes in a normal triangular cylinder array. Journal of Pressure Vessel Technology114 336–343. DOI: 10.1115/1.2929049

  • 9. Khalvatti A. Mureithi N.W. & Pettigrew M.J. (2010). Effect of preferential flexibility direction on fluidelastic instability of a rotated triangular tube bundle. Journal of Pressure Vessel Technology132 041309-1-14. DOI: 10.1115/1.4002181

  • 10. Hassan M. Gerber A. & Omar H. (2010). Numerical estimation of fluidelastic instability in tube arrays. Journal of Pressure Vessel Technology132 041307-1-11. DOI: 10.1115/1.4002112

  • 11. Ibrahim R.A. (2011). Mechanics of pipes conveying fluids - Part II: Applications and fluidelastic problems. Journal of Pressure Vessel Technology133 024001-1-30. DOI: 10.1115/1.4001270

  • 12. Jafari H.H. & Dehkordi B.G. (2013). Numerical prediction of fluid-elastic instability in normal triangular tube bundles with multiple flexible circular cylinders. Journal of Pressure Vessel Technology135 031102-1-14. DOI: 10.1115/1.4023298

  • 13. Holzmann T. (2017). Mathematics numerics derivations and OpenFOAM (4th ed.). Leoben: Holzmann CFD.

  • 14. Kim S.N. & Jung S.Y. (2000). Critical velocity of fluidelastic vibration in a nuclear fuel bundle. Korean Society of Mechanical Engineers International Journal 14(8) 816–822.

  • 15. Weaver D.S. & El-Kashlan M. (1981). On the number of tube rows required to study cross-flow induced vibrations in tube banks. Journal of Sound and Vibration75(2) 265–273. DOI: 10.1016/0022-460X(81)90344-8.

  • 16. Upnere S. Jekabsons N. & Dementjevs S. (2016). Analysis of cross-flow induced vibrations in staggered arrangement of multi-cylinder system. In 5th European Seminar on Computing 5–10 June 2016 (pp. 225). Pilsen Czech Republic.

  • 17. Lam K. Jiang G.D. Liu Y. & So R.M.C. (2006). Simulation of cross-flow-induced vibration of cylinder arrays by surface vorticity method. Journal of Fluids and Structures 22 1113–1131. DOI: 10.1016/j.jfluidstructs.2006.03.004

Journal information
Impact Factor

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 8
PDF Downloads 86 86 5