Screen Printing of SU-8 Layers for Microstructure Fabrication / Ar Sietspiedi Uzklātu SU-8 Pārklājumi Mikro-Struktūru Izgatavošanai

Open access


We report on a screen printing fabrication process for large-area SU-8 layers utilised for the preparation of microstructures in display devices such as microelectronic, electrowetting or bistable devices. The screen printing method has been selected for its effectiveness and simplicity over traditionally used spin-coating ones. Layers and microstructures produced thereof have shown proper homogeneity. Relationships between screen parameters to coating thickness have been established. Coating on an ITO (indium tin oxide) hydrophobic surface is possible when surface has been treated by UV/Ozone to increase its aqueous ability. To this end, the hydrophilic microstructure grids have been successfully built on a hydrophobic layer by screen printing and traditional lithography processes. Compared to conventional spin-coating methods, the screen printing method offers the advantages of simple, cheap and fast fabrication, and is especially suitable for large-area display fabrication

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Gelorme J.D. Cox R.J. and Gurrierez S.A. (1989). Photoresist composition and printed circuit boards and packages made therewith. US4882245A.

  • 2. You H. and Steck A.J. (2013). Lightweight electrowetting display on ultrathin glass substrate. Society for Information Display 21(5) 192-197.

  • 3. MicroChem (2001). SU-8 Negative Tone Photoresist Formulations 50-100 Data sheets.

  • 4. Luurtsema G.A. (1997). Spin Coating for Rectangular Substrates. University of California.

  • 5. Garcano G. Ceriani M. and Soglio F. Spin coating with high viscosity photo-resist on square substrates - Applications in the thin film hybrid microwave integrated circuit field. Microelectronics International 10(3) 12-20.

  • 6. Gale B.K Eddings M.A. Sundberg S.O. Hatch A. Kim J. and Ho T. (2007). Low- Cost MEMS Technologies. Elsevier.

  • 7. Yue W. Li C.W. Xu T. and Yang M. (2013). Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications. Biosensors and Bioelectronics 15(41) 675-683.

  • 8. Levario T. J. Zhan M. Lim B. Shvartsman S.Y. and Lu H. (2013). Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nature America 8(4) 721-736.

  • 9. Moser Y. Forti R. Jiguet S. Lehnert T. and Gijs M. (2010). Suspended SU-8 structures for monolithic microfluidic channels. Microfluid Nanofluid 10(1) 219-224.

  • 10. Liu J. Cai B. Zhu J. Ding G. Zhao X. Yang C. and Chend D. (2004). Process research of high aspect ratio microstructure using SU-8 resist. Microsystem Technologies 10(4) 265-268.

  • 11. Li Y. Xiadong W. Chong L. Zhifeng L. Denan C. and Dehui Y. (2005). Swelling of SU-8 structure in Ni mold fabrication by UV-LIGA technique. Microsystem Technologies 11(12) 1272-1275.

  • 12. Dai W. Lian K. and Wang W. (2004). A quantitative study on the adhesion property of cured SU-8 on various metallic surfaces. Microsystem Technologies 11(7) 526-534.

  • 13. Dey P. Pramanick B. RaviShankar A. Ganguly P. and Das S. (2010). Microstructuring of SU-8 resist for MEMS and bio-applications. International Journal on Smart Sensing and Intelligent Systems 3(1) 118-129.

  • 14. Mao X. Yang J. Ji A. and Yang F. (2013). Two new Methods to Improve the Lithography Precision for SU-8 Photoresist on Glass Substrate. Journal of Microelectromechanical Systems 22(1) 124-130.

  • 15. Ahani A. Saadati-Fard L. Sodagar A. M. and Boroumad F. A. (2011). Flexible PET/ ITO Electrode Array for Implantable Biomedical Applications. 33rd Annual International Conference of the IEEE EMBS 30 August-03 September 2011 (2878-81) Boston IEEE.

  • 16. Li P.C.H. (2005). Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery. Boca Raton FL. CRC Press.

  • 17. Handbook Tech Tips for Screen Printers. (2001). USA: SaatiPrint.

  • 18. Campo A. and Greiner C. (2007). SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. Journal of Micromechanics and Microengineering 17(6). 81-95.

  • 19. Bikerman J. (1941). Method of measuring contact angles. Ind. Eng. Chem. Anal. Ed. 13(6) 443-444.

  • 20. SU-8 2000 Permanent Epoxy negative photoresist Processing guidelines for SU-8 2100 and SU8-2150. MicroChem.

  • 21. Lide D.R. (2005). CRC Handbook of Chemistry and Physics. CRC Press.

  • 22. Willfahrt A. and Stephens J. (2010). Optimizing stencil thickness and ink film deposit. International Circular of Graphic Education and Research 6-17.

  • 23. Sarl G. (2007). GM 1075 Technical Datasheet.

  • 24. Atthi N. Nimittrakoolchai O. Jeamsaksiri W. Supothina S. Hruanun C. and Poyai A. (2009). Study of optimization condition for spin coating of the photoresist film on rectangular substrate by taguchi design of an experiment. Songlanakarin Journal of Science and Technology 31(3) 331-335.

  • 25. Snodgrass T. and Newquist C. (1994). Extrusion coating of polymers for next generation large-area FPD manufacturing. Society for Information Display 40-45.

Impact Factor

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 636 528 13
PDF Downloads 440 391 2