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Distortions of the structure of a uniform electric field when a dielectric 
body with a toroidal shape is placed in it are considered in the quasi-static ap-
proximation. The rate of distortion is proposed to estimate through the effec-
tive permittivity of toroid determined by solving the corresponding boundary 
value problem. Some numerical estimates obtained using specially developed 
software in the language of Matlab are given.
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1. INTRODUCTION

In physics and electrodynamics, of particular interest are the field distortions 
caused by the introduction of the body with toroidal shape into the field (or the exis-
tence of a region of space in it). For example, ceramic washers placed in the wave-
guides are used as heat accumulators in the art of microwave heating. In the study 
of the structure of the near electromagnetic field in the first approximation a washer 
can be replaced by some equivalent toroid. A similar approach can be applied to the 
analysis of targeted disruption of the motor-car tires under microwave irradiation, 
and so on.

In general, the problem is formulated as follows. The body of a known con-
figuration and the characteristic size produced by a material with absolute permittiv-
ity ε, magnetic permeability μ and conductivity σ is placed in an external field. It is 
necessary to assess the field distortion caused by placing the body in it.

From a physical point of view, any change in the structure of the primary field 
caused by an object introduced in it is provoked by secondary, or diffractional, fields. 
They are created by currents and charges that occur in the bulk and on the surface 
of the body under the influence of the incident field. The problem is reduced to the 
solution of Maxwell’s equations with given boundary conditions for the resulting 
field on the surface of the body, in its origin domain and at infinity. In other words, 
the tangential components of the field when passing through the surface of the body 
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must be continuous, the secondary field at infinity should disappear and take finite 
values at the points within the body [1].

A rigorous solution is possible, in particular, in the quasi-static approxima-
tion (ω → 0, λ → ∞), i.e., for potential fields. Nevertheless, it gives some insight 
into the structure of the field in the vicinity and inside the body. As far as the body 
shape is concerned, such a solution can be found only in the case when the surface 
of the body is fully described by the equation for one of the coordinate surfaces in a 
certain orthogonal coordinate system. This can greatly simplify the formulation of 
the boundary conditions.

We will look at solutions. Thus, the dielectric body with a known configura-
tion and the characteristic size of a, made from homogeneous and isotropic material, 
is placed in uniform field 0E . Let us assume that the electrical size of the body (e.g. 
size in wavelengths) is small, i.e., a / λ << 1. To assess the field distortion, it is pro-
posed introducing effective permittivity

							        (1)

where  are flows of induction vectors  
found in the presence of the body and without it, respectively. The ratio in (1) char-
acterises the degree of concentration of induction vector flux through certain section 
S of the body. In contrast to (1), in some literature sources (see, e.g., [2]) the concept 
of the effective permittivity is used to describe the properties for a mixture of dis-
similar dielectrics.

The sequence of solving the problem of effective permittivity could be as  
follows.

1. Select a coordinate system (a, b, j) in such a way to simplify the boundary 
conditions stated below. It is necessary that one of the coordinate surface, e.g., a = 
a0, could be completely superposed with body surface. If this condition is not met, 
for example, as the case of a cylinder of finite length, obtaining an exact solution in 
closed form is not possible.

2. Taking into account the type of Laplace operator D in the chosen coordinate 
system, one can compile the equation

,							        (2)

with respect to scalar potential F (a, b,j). 

3. The separation of variables (or Fourier method) [3] is usually used to solve 
(2), representing the general solution as the superposition of particular solutions of 
form F = A(a)B(b)C(j) and going from partial differential equations to ordinary 
differential equations for functions A(a), B(b) and C(j). In total, there are 11 co-



59

ordinate systems that allow direct separation of variables [4]. In addition, there are 
changes in bispherical and toroidal systems, but with the submission

F’ = G(a, b) f(a, b, j) 
where f is a new unknown function, G (a,b) is an additional separating factor.

4. The resulting equations include the constants, called the separation con-
stants. They are to be found taking into account the existing symmetries of the body, 
which determine the periodicity of solutions for certain coordinates. This simplifies 
the differential equations obtained and if it is possible to reduce them to the routine 
operations.

5. Decision of the ordinary differential equation is usually expressed in terms 
of some special functions with unknown coefficients to be determined. The proper-
ties of these functions are determined from selected coordinate system features.

6. Next, we have to find these coefficients. For this purpose, first, consider the 
limited potential in the internal region of the body and the disappearance of influence 
of the latter in the points of infinity outer region. This allows us to record solutions 
for these areas separately, thereby reducing the number of unknown coefficients.

7. These solutions should be joined due to the next reasons. They must satisfy 
the boundary conditions, which in this case consist in the continuity of the potential 
and the normal component of the induction vector on the surface of the body. If the 
surface is described as a =a0, the boundary conditions take the form [3]. 

					      (3)

where F1 и F2 are scalar potentials into and outside the body, respectively.

Imposition of boundary conditions allows obtaining the required equations for 
the unknown coefficients in its final form. Their decisions complete scalar potential 
finding.

8. Knowing the potential, one can find the electrical field intensity 

11 gradFE −=
and induction vector  in the internal region in the body. 

9. Determine the effective permittivity (1) in the desired section of the body 
under consideration

 							        (4)
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2. The Field in the Vicinity of the Toroid

   
 Fig. 1. Toroidal coordinates.

As already mentioned, a rigorous solution of the problem of effective permit-
tivity is only possible for bodies whose surfaces can be completely described by the 
equation for one of the coordinate surfaces in some orthogonal coordinate system, 
which can significantly simplify the writing of the boundary conditions.

With respect to the toroidal body, system a, b, j (Fig. 1) complies with this 
requirement. It is obtained by rotating around vertical axis z of two mutually orthog-
onal families of circles  a = const, b = const. The coordinate surfaces are formed in 
the space as a family of tori a = const, spherical segments b = const, and the half-
planes j = const. 

If the piece of straight line having length 2c is positioned on the x-axis, for 
arbitrary point P (a, b, j) its first coordinate can be found using relationship a = ln 
(r1/r2), where r1 and r2 are the distances from P to the ends of the piece. Coordinate b 
determines the angle from point P subtended by piece 2c. The j is the angle between 
the xz-plane and the plane passing through this point P and the z-axis.

Relations of toroidal a, b, j  and Cartesian x, y, z coordinates are given as 
follows [4]:

 					     

(5)

where .  Value с = (a2 - b2)1/2 plays the role of the scale 
factor and binds radii a and b of central circle and generating one of the toroid.

These radii can be expressed in terms of coordinate a0 of the torus surface

	
Surface α0 = Arch a/b (Fig. 1) divides the whole space into two regions: inner 

α0 ≤ α < ∞ occupied by the toroid and external 0 ≤ α ≤ α0. Further, notation s = cha, 
s0 = cha0 is used for conciseness.

Let the toroid produced from a material with dielectric constant ε1 be placed 
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in uniform electric field Ē0, directed perpendicularly to the z-axis of its rotational 
symmetry (Fig. 1). Assuming a quasi-static problem, we turn to the Laplace’s equa-
tion (2) and will seek a field in the vicinity of the toroidal shell through the scalar 
potential

  , 							        (6)

where F0 = – E0х is the potential of the primary field, bF 2,1 is the potential increment 
due to the influence of the body. Subscripts 1 and 2 refer to the inner and the outer 
regions of the toroid, respectively.

Given the symmetry of the body with respect to the coordinate axes and using 
the formula from (5), which relates toroidal and Cartesian coordinates, we find 

			    (7)

As it is known [4], [5], the eigenfunctions in the toroidal coordinate system 
are associated Legendre functions with half-integer indices. To use them for sub-
mission to x, one can multiply and divide the right-hand side of (7) to (s - cosβ)1/2. 
Expanding the denominator of the resulting fraction in a Fourier series [5], we have

		   
(8)

where Mx = 2E0 c/π,  Q1
n-1/2 (s) is the associated Legendre function of the 2nd kind of 

half-integer order,	

is the Kronecker delta. Potentials due to the influence of the toroid are naturally 
sought in the form

 
,	  (9)

where the upper and lower rows refer to the inner and outer regions of the toroid, 
respectively. P1

n-1/2 (s) is the associated Legendre function of the 1st kind, which 
meets the conditions of the disappearance of the effect of the body in the inner points 
of toroid where α → ∞. Unknown coefficients an and bn are determined from the 
boundary conditions (3), consisting in continuity of the potential and the normal 
component of the induction vector passing through the surface of the toroid.
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Here 

					      
(10)

ε1 and ε2 are the relative permittivity of the media in the inner and outer regions of the 
toroid, respectively. Considering the first condition (i.e., left formula) in (10) and as-
suming uniform convergence of the corresponding series, we find

							        
(11)

Differentiating potentials according to the second condition in (5) and using 
(11), after laborious transformation we obtain

							        (12)

where

					     (13)

						      
(14)

To simplify the formulas containing the associated Legendre functions, their 
arguments s0 are not written in most cases. The primes denote derivatives of these 
functions by s0. The numerical calculations are advantageously carried out using the 
integral representations [5] of the Legendre functions.

When performing calculations, it is necessary to estimate the minimum num-
ber of members in the respective sets that must be summed to obtain a satisfactory 
accuracy. To this end, Figs. 2 and 3 illustrate the behaviour of the terms in (7) marked 
by the circles. They describe the unperturbed external field potential, depending on 
the number of terms n and torus parameter s0. Dotted lines are spline approximations 
and are plotted for illustration purposes only.

Fig. 2. Illustration of convergence of the series 
(7).

Fig. 3. Dependence of the modulus of members 
in (7) on s0.
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The resulting graphs confirm that the solutions, which contain the associated Legen-
dre functions with half-integer index as the eigenfunctions, converge fast enough for 
all practically interesting variations of toroid geometrical dimensions. Due to this, in 
most cases, series (8) and (9) can be limited to 4–5 members.

The exceptions are the toroids with a relatively small diameter of the centre 
hole when s0 tends to 1. In these cases, the series does not converge quickly enough, 
and it requires a special study. If s0→1, the Legendre functions in (13) and (14) can 
be calculated from the asymptotic formula [5]. This gives

				     
(15)

			    
(16)

It is shown that functions gn and Tn no longer depend on number n as s0 → 1. 
Therefore, the expression for the potential inside the toroid, or the top line in (9), can 
be greatly simplified, since it is now a series that is easily summed. After appropriate 
substitutions that potential takes the form:

 	
		   (17)

It follows from (17) that for toroids with a vanishingly small diameter of cen-
tral hole, the field strength inside the body coincides with the direction of the applied 
field and is a constant that does not depend on the coordinates. Therefore, in this case 
there is a uniform polarisation of the toroid.

If the external field acts along the z-axis, a similar procedure can be applied to 
find the potentials. As in (7), the first step should be to search for the expansion of the 
coordinate, the unit vector of which is parallel to the applied field. Details of relevant 
computing are provided in Appendix.

3. The Effective Permittivity of the Toroid 

To calculate the effective permittivity from (1), it is necessary to find the fluxes

of electrical induction vectors   through central cross section 
S (it is shaded in Fig. 1) in the presence of the toroid and without it, respectively. In 
this case, value of Е1 is φ-component of the field strength inside the toroid.
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It is easy to determine through potential F1

where hφ is the Lamé coefficient [4]. The elementary area on section S can be repre-
sented as   After corresponding substitutions and elaborate calcula-
tions, one can find the flux of induction 

     

(18)

where εr = ε2/ε1 is the relative permittivity of the material, un=1+ bn. Values bn and Tn 
may be obtained from (12) and (13), respectively. In the central section of the toroid 
φ = π/2 (for the right half of this section) and φ = 3π/2 (for the left half).

The flow in the absence of the toroid is proportional to twice the area of a 
circle with radius b (Fig. 1):

				     (19)

Finally, we find that the effective permittivity of the toroid is described by an 
infinite series

	  (20)

Figure 4 depicts a family of graphs describing the dependence of the effective 
permittivity of the toroid on geometrical parameter s0 = a/b and relative permittiv-
ity εr of the material. The initial region of the curves is shown for convenience on a 
larger scale in Fig. 4 b separately. The sum of the first 10 items of the series is taken 
in the future for the exact value of the effective permittivity.

Fig. 4. Effective permittivity of toroid change depending on its geometry and material.
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As the series converges rapidly enough, the number of terms taken into ac-
count can be significantly reduced by the cost of some decrease in accuracy. Thus, 
while limiting its only zeroth member the error does not exceed 5–10 % in almost 
any combination of the values ​​of the geometric parameters s0 and permittivity εr of 
the toroid material. It remains below a specified upper limit, but tends to increase 
with increasing εr and to decrease with increasing s0. Error exceeds this limit only for 
small values of 1< s0 ≤1.25 of the toroids with a small centre hole diameter.  In this 
case, the potential (17) is recommended to be used as an outcoming point to calculate 
the effective permittivity.

4. The Toroid Shape Permittivity

Eliminating in (20) dependence on εr by taking limit εr →∞, we obtain an ex-
pression for the toroid shape permittivity in the form:

 	

		   (21)

The family of curves constructed in accordance with (20) is shown in Fig. 5. 
It depicts how the limit of effective permittivity εeff has been reached at different 
values of s0. These curves allow characterising the gain in the value of the flow of 
electric induction through the central section of the toroid due to the properties of 
the dielectric, implemented for a given body size. On the other hand, it is possible to 
judge on the degree of utilisation of these properties.

They occur most fully at low permittivity material when εeff practically equals 
εf  even at relatively low values of s0. With an increase in εr, the relation εeff (εr) is 
becoming weaker. It is easy to establish that the spread of values εr that inevitably 
arises due to technological reasons affects the change in the value of εeff: the stronger 
it is, the more geometrical parameter s0. Graph of function εeff (s0), i.e., the maximum 
attainable value of the gain, is shown in Fig. 5 b. It allows for the specified toroid size 
finding such permittivity of the dielectric material, which having a further increase 
will not lead to an increase in the value of εeff.

Fig. 5 a.  The behaviour of function εeff(εr). Fig. 5 b. The toroid shape permittivity. 

	 From a physical point of view, limiting transition εr → ∞ turns any dielectric 
material of toroid into a perfect metal, on the surface of which the tangential field 
components, i.e., Eφ and Eβ, become zero. Thus, the structure of the field in the outer 
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region will be determined by single component Eα = - gradF2, which is normal to 
the surface of the body. Illustrations of the field structure near a perfectly conducting 
toroid for some particular cases can be found in [6].

5. CONCLUSIONS

The problem of the incidence of a plane electromagnetic wave to a toroidal 
dielectric body in many cases can be considered quasi-stationary. The correspond-
ing scalar potentials obtained by solving the Laplace’s equation are represented as 
the series containing the associated Legendre functions with half-integer indices. 
Assessment of convergence of the series shows that for almost all possible combi-
nations of the geometric dimensions of the toroid and the dielectric constant of the 
material the series damps sufficiently quickly. With this, it is permissible in practical 
calculation to retain in the sum 4–5 members only. Certain exceptions are the toroids 
with small (s0→1) diameter of the central hole.

Distortion of a uniform external field caused by a body being placed in it is 
proposed to be estimated by the value of the effective permittivity of this body. It is 
equal to the gain in the value of the flow of electric induction vector through a certain 
section of the body that arises due to its dielectric properties. Necessary relations 
and appropriate ratio calculations for the central section of the toroid are deduced. 
The toroid shape permittivity is found. All calculations have been performed in the 
computing environment Matlab using specially designed programs.

It should be noted that the overall nature of behaviour of toroid permittivity 
on the size and properties of the material remains the same as for the bodies of other 
shapes, e.g., such as sphere and ellipsoid [7], [8]. This testifies to the proximity of the 
physical processes that occur under the influence of homogeneous external fields on 
bodies with different geometry. Common features are generated by the similarity of 
the charge and polarisation current distributions inside the body.

APPENDIX: ON DECOMPOSITION CONTAINING THE ASSOCIATED 
LEGENDRE FUNCTIONS

In many boundary value problems whose solution requires the use of toroidal 
coordinates, it is necessary to present the z-coordinates of points belonging to the 
boundary of the area under consideration as a series whose coefficients are expressed 
in terms of the associated Legendre functions.

Let us find this expansion. Using coupling equations (5) between Cartesian 
and toroidal coordinates one can write

,					      (A1)

where

						       
(A2)
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Expand function (A2) in a Fourier along sine β in the interval [-π, π]:

						       (A3)

where 

 

are coefficients to be determined. Thus, it is necessary to calculate the integral

	
					      (A4)

Writing the numerator of the integrand in the form

and using the integral representation [5] to the associated Legendre function of the 
2nd kind of the first order, we find

 
then

Using the recurrence formula [5]

  

in case of  ν = n-1/2, one can obtain instead of (A4)

						       (A5)

hence

 

Substituting this value of the coefficient in (A3) and back to (A1), we have the 
desired expansion

			    (A6)
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In the well-known monograph [4, v.2, ch. 10, example 10.37], formula (A6) is 
shown in the wrong way.
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NOVĒRTĒJUMS VIENDABĪGA ELEKTRISKĀ LAUKA  
IZKROPĻOJUMIEM, KURUS RADA TOROĪDA FORMAS  

DIELEKTRISKS ĶERMENIS

J. Krasņitskis, A. Popovs, A. Kalnačs

K o p s a v i l k u m s

Darbā apskatīts kvazi-statisks tuvinājums viendabīga elektriskā lauka 
izkropļojumiem gadījumos, kad tajā tiek ievietots dielektrisks toroīda formas 
ķermenis. Izkropļojumu apmēru tiek piedāvāts novērtēt ar toroīda efektīvo 
caurlaidību, kas tiek noteikta, atrisinot atbilstošo robežvērtību uzdevumu. Tiek 
doti skaitliski novērtējumi, kas iegūti, lietojot speciāli valodā Matlab izstrādātu 
programmatūru.

18.06.2015.


