Impact of Different Building Materials on Summer Comfort in Low-Energy Buildings

Open access


The aim of the current paper is to analyse thermal comfort and overheating risks in the low-energy buildings in a summer season under Latvian climate conditions both experimentally and numerically. An interior temperature and relative humidity are analysed under free-floating conditions. Two cases are analysed: in one case, the solar influence through the window is taken into account; in the other this influence is omitted. Three different building solutions are observed: two building structures which mainly consist of the mineral wool and wooden materials and one structure from aerated clay bricks and mineral wool. The experiments have been implemented in test stands in Riga, Latvia. The numerical simulations based on measurements obtained from test stands have been performed using software WUFI Plus. The results show that the wooden constructions have high overheating risks.

1. Council Directive 2010/31/EU of 19 May 2010 on the energy performance of buildings (recast). (2010). Official Journal of the European Union, L 153/13, 13-35.

2. Schnieders, J. (2005). A first-guess passive home in southern France: Passiv- On. Retrieved on 1 March 2015, from

3. Schnieders, J. (2009). Passive houses in South West Europe. Darmstadt: Passivhaus Institut.

4. Beizaee, A., Lomas, K., & Firth, S. (2013). National survey of summertime temperatures and overheating risk in English homes. Building and Environment, 65, 1-17. doi:10.1016/j.buildenv.2013.03.011.

5. Mlakar, J., & Štrancar, J. (2011). Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy and Buildings, 43(6), 1443-1451. doi:10.1016/j.enbuild.2011.02.008.

6. Mlakar, J., & Štrancar, J. (2013). Temperature and humidity profiles in passivehouse building blocks. Building and Environment, 60, 185-193. doi:10.1016/j.buildenv. 2012.11.018.

7. Spitz, C., Mora, L., Wurtz, E., & Jay, A. (2012). Practical application of uncertainty analysis and sensitivity analysis on an experimental house. Energy and Buildings, 55, 459-470. doi:10.1016/j.enbuild.2012.08.013.

8. Brun, A., Wurtz, E., Hollmuller, P., & Quenard, D. (2013). Summer comfort in a low-inertia building with a new free-cooling system. Applied Energy, 112, 338-349. doi:10.1016/j.apenergy.2013.05.052.

9. Bravo, G., & González, E. (2013). Thermal comfort in naturally ventilated spaces and under indirect evaporative passive cooling conditions in hot-humid climate. Energy and Buildings, 63, 79-86. doi:10.1016/j.enbuild.2013.03.007.

10. Katunský, D., & Lopušniak, M. (2012). Impact of shading structure on energy demand and on risk of summer overheating in a low energy building. Energy Procedia, 14, 1311-1316. doi:10.1016/j.egypro.2011.12.1094.

11. McLeod, R., Hopfe, C., & Kwan, A. (2013). An investigation into future performance and overheating risks in Passivhaus dwellings. Building and Environment, 70, 189-209. doi:10.1016/j.buildenv.2013.08.024.

12. Larsen, T. S., & Jensen, R. L. (2011). Comparison of measured and calculated values for the indoor environment in one of the first Danish passive houses. In Building Simulation 2011: Proceedings of the 12th Conference on the International Building Performance Simulation Association. Sydney, Australia: IBPSA Australasia and AIRAH, 1414-1421. 57

13. Rodrigues, L., Gillott, M., & Tetlow, D. (2013). Summer overheating potential in a lowenergy steel frame house in future climate scenarios. Sustainable Cities and Society, 7, 1-15. doi:10.1016/j.scs.2012.03.004.

14. Breesch, H., Bossaer, A., & Janssens, A. (2005). Passive cooling in a low-energy office building. Solar Energy, 79(6), 682-696. doi:10.1016/j.solener.2004.12.002.

15. Energy Efficiency Monitoring. (2015). Retrieved on 1 March 2015, from

16. International Organisation for Standardisation. (2007). ISO 6946: Building components and building elements - thermal resistance and thermal transmittance - calculation method. Genève, Switzerland: International Organization for Standardization.

17. Gendelis, S., Jakovičs, A., Nitijevskis, A., & Ratnieks, J. (2013). Comparison of different air tightness and air exchange rate measurements in very small test buildings. In 34th AIVC-3rd TightVent-2nd Cool Roofs’-1st Venticool Conference. Athens, Greece.

18. Künzel, H. (1995). Simultaneous heat and moisture transport in building components. Stuttgart: IRB Verlag.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 151 7
PDF Downloads 130 101 6