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An approach is proposed to the modelling of wind farms in the electric 

power system long-term planning. It allows a specialist to perform 

calculations based on scanty information and offers a set of ready-to-use data 

for easy, fast, and precise modelling. The authors exemplify the calculations 

of wind speed probability density and power curves and give an idea for 

relevant corrections. They also show how to pass from a single wind turbine 

model to the unified model of multiple wind turbines which would meet the 

requirements of long-term planning tasks. The paper presents the data on 

wind farms that are operating in UK and Oceania. 

Keywords: wind energy, wind farm, power system planning, power 

system modelling. 

 

1. INTRUDUCTION 
 

Long-term planning plays a significant role in development of any power 

system (PS). Its objective is to determine the minimum cost strategy for long-range 

expansion of the generation and transmission systems that would be adequate to 

supply the forecasted load within a set of technical, economic and political 

constraints [1]. Moreover, careful planning of the power sector is of great 

importance, since the decisions to be taken involve commitments associated with 

large resources, which implies potentially serious economic risks for an electrical 

utility and the economy as a whole. Each element of the network is to be modelled 

taking into consideration all the present and future conditions of the PS, including 

power plant types [2]. Since there are several types of power plants, methods for 

their modelling also vary. The production curves might differ – some of them (e.g. 

for CHP and hydro power plants) are controllable or easy to predict, while others 

(e.g. for wind turbines) cannot be controlled or predicted. The growing share of 

wind farms (WFs) in the world has led to the necessity of highlighting the question 

of relevant modelling. The average power value of a turbine cannot be used for 

modelling due to very low accuracy of the final results; therefore, more 

complicated modelling techniques have to be applied. Furthermore, modelling the 

parallel operation of multiple – from tens to hundreds – wind turbines is even a 

more complicated task, which involves numerous factors. In particular, we should 
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take into account the wind speed distribution throughout the whole farm, the 

geographical landscape, different times of non-availability, etc. Often for the 

specialist dealing with PS planning it is difficult to obtain all the parameters needed 

for accurate calculation; therefore, the ready-to-use data are of great importance. 

 

2. MODEL OF A SINGLE WIND TURBINE 
 

The behaviour of a single wind turbine (WT) at a particular location is 

modelled based on the wind data, turbine power curves, and some other factors, 

e.g. the availability time. 

2.1. Wind speed probability density 

The input for the WT model is Weibull’s function of the in-situ wind speed 

probability density. However, defining this function is not an easy task, and the 

relevant data are not always available to a specialist performing the long-term 

planning who might know only the mean wind speed at the WF site. Development 

of the model involved analysis of the wind speeds at many locations in order to 

work out a set of Weibull’s functions for different mean wind speeds [3, 4]. As an 

example, Fig. 1 shows the wind speed probability density measured at a WF 

location on North Harris Island (UK), with the mean speed of 8.4 m/s. The Weibull 

curve: 
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was plotted for the parameters: α =  1.85, β = 9.48, and fitted to the measured 

density. 

 

 
Fig. 1. Measured wind speed probability density and the best-fit Weibull function.  

 

In the same way, many other locations were examined with the aim to work 

out the ready-to-use Weibull’s functions for the mean annual wind speeds from 5.5 

to 10 m/s. The wind speed distribution can differ even for equal mean wind speeds; 
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therefore, priorities were given to unremarkable locations with average 

distributions. The total number of examined locations is 30 (a future extension is 

also possible). 

2.2. Power curve 

The next key parameter for a WF model is power curves of turbines. 

Usually, these curves are constructed within the limits of a single model, although 

separated models could be created if required. Power curves are easy to obtain 

from the wind turbine manufacturer, so the input data are available to the specialist 

performing calculation. At the same time, the model offers a whole set of power 

curves for the 500kW, 1MW, 1.5MW, and 2.5MW generators. As an example,  

Fig. 2 shows the power curve for a 500kW wind turbine.   

Power curves given by the WT manufacturer are usually plotted based on 

measured values. Otherwise, such a curve is to be derived from the wind potential 

using complicated equations, which often give imprecise result. 

 

 
Fig. 2. The power curve of a 500kW wind turbine. 

 

Using special software, from each curve the relevant mathematical function 

is then extracted [5]. The whole curve is difficult to describe, so from zero to the 

cut-in wind speed the power is constant (i.e. zero), while above the rated values we 

have a constant rated power. However, the curve shape between the cut-in and the 

rated wind speeds can be accurately described by a polynomial function. The order 

of the function is recommended to be ≥ 5. If this order is < 5, the accuracy will 

most likely be below 95%. 

For the example shown in Fig. 2 the function is: 

P=0.0105x
5
-0.61502x

4
+13.4014x

3
-135.5567x

2
+685.7975x-1,392.4221  (2) 

where  P is power, kW; 

            x is the wind speed, m/s. 

In this case the function has a high accuracy (up to 99%); however, it covers 

only a section of the curve from the cut-in wind speed to the rated. The power 

below the cut-in section is zero, and from the rated to the cut-out wind speed this is 

considered equal to the rated. 

The power curve representation as a function simplifies further calculations, 

as, at this stage there are two ready-to-use functions: the wind speed probability 
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density at the WT site and the power function. Multiplication of these curves gives 

the WT power probability density function, showing how often the turbine will 

generate at each power level. 

This type of curve would be appropriate in financial calculations for a single 

turbine, making it easy to predict the annual energy production, the monetary profit 

and the payback period. However, this is not applicable to long-term planning 

tasks, since it is important to observe all PS elements operating in a single 

timescale in the cases when the WT power probability density function does not 

allow correction of the power value with time. 

2.3. Curve creation algorithm 

Since there is no appropriate function to describe accurately the wind speed 

distribution in time and no methods exist for long-term forecasting of wind speeds, 

for particular time and location in the future the wind speed is considered random 

in definite boundaries of values [6]. 

The proposed method for modelling the production curves of a wind power 

plant (WPP) uses a function that gives random values with the following 

limitations: 

 The lower limit of power values is zero. 

 The upper limit of power values is the maximum capacity of a WPP. 

 The function under consideration is that of WT power probability density. 

Seasonal correction. Apart from the above limitations, the time-power 

(production) curve should be modelled with account for inconstancy of the power 

probability density through a year, e.g. the wind speed variations from month to 

month can be significant. Table 1 shows the mean wind speed distribution through 

a year for the same location (the UK data). In the model it is assumed that the 

deviation is up to +/- 25% for different months. In this example the maximum 

deviation from the mean value (8.4 m/s) is observed in June and January. 
 

Table 1 

Mean wind speed distribution through a year 

Month 
Mean wind 

speed, m/s 

Jan 10.7 

Feb 9.4 

Mar 9.1 

Apr 7.7 

May 7.2 

Jun 6.4 

Jul 6.5 

Aug 6.8 

Sep 8.6 

Oct 9.1 

Nov 9.7 

Dec 9.7 
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Availability. The technical availability of turbines in the model is assumed 

to be 0.90, which corresponds to the real turbine lifecycle and is adopted in 

practice. 

Algorithm. The algorithm for modelling the curve of power production by a 

single wind turbine is presented in Fig. 3.  

 

 
Fig. 3. The algorithm for creation of a time-power production curve. 

 

According to the algorithm, the first step is to calculate the WT power 

probability density function. The generation of a random number from 0 to 10 is 

done to define the category to which the WT capacity will belong (the 0-10 range 

of numbers is associated with the most probable power value). Further, the random 

capacity value is found from one of the constant values equal to the power 

corresponding to the wind speeds from 0 to 30m/s. Normally, the curve is built of 

30 different repeating power values. The total number of values to be found is 

discussed below. 

Level of detail (LOD). To reduce the calculation time and simplify 

calculations, the time-power (production) curve should have as small as possible 

number of values. At the same time, the number of observed values affects the 

LOD of a curve; besides, it should meet the requirements of a particular task. For 

example, to calculate the next-day energy market operation or to solve similar tasks 

it would be reasonable to observe the hourly or even minute curves, though in 

long-term planning there is no need for such a high LOD – the task is not to 

observe a single short-term operational state but to proceed up to the next 30 years 
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and obtain the accurate final results based on forecasts, assumptions, 

approximations, and corrections. 

The main requirements of any power plant modelling in long-term planning 

tasks are: 

1. The production curve should include the maximum and the minimum (not the 

averaged) values. 

It is important, since the production of a power plant can affect the 

production of other power plants: larger plants adapt to a wind power plant’s 

production. 

2. The curve should be time-scaled (with different power values realistically 

scattered along it). 

There is a wide variety of possible combinations due to a large number of 

elements: wind power plants, hydro power plants, CHP plants, load, etc., 

each having its own unique characteristics. In order to make correct 

calculations, as many as possible combinations are to be considered. 

3. The modelled production curve should result in the amount of energy similar 

to the given by the pattern curve, though differing from year to year. 

In order to model a real situation, the energy production should not be taken 

equal every year; at the same time, large differences are not acceptable 

unless the power plant or load parameters are going to change significantly. 

To find a balance between the calculation time (which can be reduced by 

minimizing the number of values) and the LOD of a curve (which should be as 

high as possible) is rather a complicated task. This paper investigates a scenario 

with 120 points on the WPP production curve. This means that there are 10 values 

for each of the 12 months of a year. Experimentally, after construction of multiple 

curves it has been defined that 10 values per month give a simple curve that meets 

the above requirements. Since the PS planning is based on the informational 

uncertainty and there is no reliable example for comparison, it is difficult to link 

the accuracy of final results to the LOD of WPP production curves. 

 

3. UNIFIED MODEL OF MULTIPLE WIND TURBINES 
 

Even if a wind farm possesses identical wind turbines, it would be incorrect 

to multiply a single turbine’s production curve by the number of turbines, as the 

wind speed at a particular time can vary significantly throughout the farm [7].  

On the other hand, it is impractical to create an individual model for each 

wind turbine, as the requirement for LOD is not so high in the PS planning tasks. 

The proposed approach to the creation of a unified model of multiple wind turbines 

relies upon our attempts to combine the complexity of considering the real 

behaviour of multiple wind turbines and the simplicity of having only one unified 

model. 

3.1. Wind farm landscape 

Wind speed variations throughout a farm can be explained by the landscape 

features of the occupied area. Normally, the farms located on flat terrain or the 
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offshore farms have smaller deviations of wind speeds from turbine to turbine, 

while in the cases of hilly terrain these speeds can differ significantly. 

Figure 4 illustrates such difference for two turbines that are close enough to 

each other. The hill in this case is an obstacle for the airflow directed to Turbine 2, 

while the way to Turbine 1 is fully open. 

 

 

Fig. 4. Influence of the landscape on the wind speed. 

 

Normally, in the case of wind direction shown in Fig. 4, the anemometer at 

Turbine 1 gives a much higher wind speed value than that at Turbine 2. With the 

wind direction changing by 180°, the situation becomes opposite: the wind speed at 

Turbine 2 would be much higher than at the Turbine 1 site. 

In order to define possible wind speed variations at a single wind farm, a 

particular farm of the type was chosen. The farm is located in Oceania, has 97 

turbines with the total capacity of 48.5 MW (the maximum power of a single 

turbine being 500 kW). Figure 5 shows a SCADA screenshot of this farm. Each 

cell represents one wind turbine and shows the power production at a particular 

time moment. 

 

 

Fig. 5. SCADA screenshot of the wind farm. 

 

Observations and historical data have shown that the maximal difference of 

power production can be up to 65% (between minimum and maximum or +/-30% 
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from the average) for a particular number of turbines. Obviously, it should be 

lower in the cases of flat terrain and for the offshore wind farms.  

The model offers three types of wind farm: onshore - hilly terrain, onshore - 

flat terrain, and offshore farms. In the modelling, the deviations from the average 

power value are calculated as follows. 

For a hilly terrain: 

% 60
200

Number of Turbines
Deviation     (3) 

For a flat terrain: 

% 30
200

Number of Turbines
Deviation     (4) 

For offshore: 

% 20
200

Number of Turbines
Deviation     (5) 

In the first case (hilly terrain, ~100 turbines) the deviation from average is 

+/-30% for a specific proportion of turbines. For example, if at a certain point the 

average power is 200 kW, 1/5 of the turbines will have the power: 

 200 + (0.30 ∙200) = 260kW, 

while for one third of them this power will be:  

200 - (0.30∙200) = 140kW. 

Figure 6 exemplifies the power distribution throughout such a wind farm. 

 

 

Fig. 6. Power distribution throughout a wind farm in the hilly terrain case. 

 

The power values in this case are averaged for a current operational state and 

will be different for the next. Proportions of higher and lower power are changing 

with each new step (operational state), so there is a diversity of high/low total 

power combinations. As defined above, in the model 120 operational states (values 

on the production curve) per year are calculated in which the duration of one 

operational state is 8760h/120=73h. 

Figure 7 presents a brief sketch of the proposed model. 
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Fig. 7. Sketch of the proposed model 

 

The curve in Fig. 7 allows the WPP modelling for up to 200 turbines; it 

shows a realistic energy production and meets all modelling requirements in long-

term planning tasks. 

 

4. DISCUSSION AND CONCLUSIONS  
 

The results of our work have shown that by computer modelling it is 

possible to create an accurate model of large wind power plants. Since long-term 

planning might mean up to a 20-year span, we tried to keep our model as simple as 

possible while not losing the required level of detail. The model has been proved to 

meet both requirements, thus providing the specialist with the ready-to-use curves 

and data. 

So far, the algorithm for modelling the curve of power production by a single 

wind turbine with determination of the probability density of wind speed based on 

its mean values has not been sufficiently advanced, mainly due to a relatively small 

number of locations examined. In the near future, after thorough tests and 

corrections it is possible to apply the algorithm to the power system long-term 

planning and modelling software such as PSPlanner, which has been created at the 

Laboratory of Power System Mathematical Modelling and continues to develop, 

thus providing tools for the decision making in this area. 
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APKOPOTAIS VAIRĀKU VĒJA ĢENERATORU MODELIS 

 

O. Kočukovs, A. Mutule 
 

K o p s a v i l k u m s  
 

Rakstā ir apskatīta vēja elektrostaciju modelēšana ilgtermiņa attīstības 

plānošanas uzdevumos. Modelēšana tika veikta, izmantojot ierobežotu datu 

apjomu, kuri bija piejami lietotājam. Gatavie dati deva iespēju veikt ātru un precīzu 

modelēšanu. Raksts piedāva metodi kā pāriet no viena vēja ģeneratora modeli uz 

vēja elektrostaciju (vairāki vēja ģeneratori) modeli, kas atbilst ilgtermiņa attīstības 

plānošanas prasībām. Rakstā atspoguļoti dati no Okeānijas un Lielbritānijas 

eksistējošām vēja elektrostacijām. 

30.06.2014. 
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