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A three-dimensional soliton model of photon with corpuscular and 

wave properties is proposed. We consider the Maxwell equations and assume 

that light induces the polarization and magnetization of vacuum only along 

the direction of its propagation. The nonlinear equation constructed for the 

vector potential is similar to the generalized nonlinear Schrödinger equation 

and comprises a dimensionless constant  that determines the size-scale of 

soliton and is expected to be small. The obtained one-soliton solution of the 

proposed nonlinear equation describes a three-dimensional object identified 

as photon.  
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1. INTRODUCTION 

Since ancient times people have been interested in the nature of light, long 

before the corpuscular and wave interpretations were proposed in the 17th and 18th 

centuries. Strangely that Newton having observed a typical wave phenomenon now 

known as Newton's rings assumed the light to be a stream of particles. Many 

diffraction and interference phenomena of light observed after Newton established 

the dominance of the wave theory. Maxwell summed up all the previous 

experience with electricity and magnetism in a system of equations whereof it 

followed that light is an electromagnetic wave the electric and magnetic fields of 

which are perpendicular to the direction of wave propagation. In 1900 Max Planck 

introduced the concept of the light quantum to explain the distribution of energy in 

the black-body radiation. A new constant  – the Planck constant – became known. 

At a given frequency   the smallest portion of energy transferred by light to 

matter is equal to  . In 1905 Einstein explained the photoelectric effect using the 

hypothesis of light quanta or photons. The Compton effect interpreted as collision 

between two particles, photon and electron, exchanging energy and momentum is a 

particular manifestation of the corpuscular nature of light. 

New equations of a new mechanics – the Schrödinger and Dirac equations – 

were proposed and used successfully to describe the motion of the electron and the 

structure of atoms and molecules. Only in 1927 the quantization procedure for 

Maxwell equations by Paul Dirac [1] provided a logical foundation to the concept 

of photon. Employing a Fourier series for electromagnetic field in a box with 

periodic boundary conditions Dirac presented the energy of the field as a collection 
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of energies of an infinite number of linear harmonic oscillators. After quantization 

of the harmonic oscillators the electromagnetic field becomes an operator acting on 

the occupation of the states of photons. The quantization procedure allowed all the 

processes of emission and absorption of photons to be explained, and a new branch 

of physics – the quantum optics – was born. 

Nevertheless, many physicists are not satisfied with the present under-

standing of the nature of light. Indeed, the quantization procedure is very formal, 

and it is hard to connect infinite number of the harmonic oscillators with the pro-

perties and finite space of vacuum. The traditional questions are: what is a photon 

and where it is? To quest the nature and the location of a photon the international 

conferences [2, 3] have been organized. 

In the present paper we seek answers to the questions on the basis of two 

physical statements. First, since the energy of a photon is finite and equal to  , 

the photon must occupy a finite space. Second, the photon propagates in vacuum 

without getting dispersed and remaining unchanged while traveling for millions of 

years. Thus, the equation describing the photon, if exists, must be a nonlinear one. 

The quantum mechanics is a linear theory the superposition principle for which is 

fulfilled. By introducing a nonlinear equation we are out of the traditional quantum 

mechanics, the superposition principle does not work. 

A nonlinear system of the relativistic invariant Maxwell and Dirac equations 

might serve as a starting point of obtaining a nonlinear equation for the photon. 

This system is the basis of quantum electrodynamics, one of the most accurate 

physical theories. However, attempts to derive a nonlinear equation describing the 

propagation of photon from the Maxwell and Dirac equations have not been 

successful, maybe for a very simple reason: the Dirac equation depends on the 

mass m  of the electron, or the Compton length )/(mc , which looks physically 

unrealistic – why should the nonlinear equation describing the propagation of 

photon depend on the mass of electron? 

We consider the vacuum as a medium without electric charges and currents 

and focus on the Maxwell equations. Our essential proposal is that the vacuum is a 

medium where light induces the polarization and magnetization along the direction 

of the momentum of light. The procedure of making the Maxwell equations 

nonlinear and including the quantum properties of light looks rather artificial. The 

obtained nonlinear equation is similar to the generalized nonlinear Schrödinger 

equation derived earlier and has the one-soliton solution with physically reasonable 

properties.  

2. MAXWELL EQUATIONS 

The Maxwell equations [4] are: 

1
rot 0

c t


 



D
H , (1) 

1
rot 0

c t


 



B
E ,   (2) 

div 0D , (3) 

div 0B . (4) 
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The following respective relations between electric displacement D and electric 

vector E and between magnetic induction B and magnetic vector H are usually 

used: 

PED  ,                                                  (5) 

MHB  ,  (6) 

where P is the polarization vector, 

 M is the magnetization vector.  

For simplicity, we omit factor 4 often used before P and M in Eqs. (5) and 

(6). The energy density w  and momentum density q of the electromagnetic field 

are derived from Eqs. (1) and (2) [4]: 

 
1

8
w


   E D H B ,                                    (7) 

 
1

4 c
 q E H .  (8) 

Further, Eqs. (1)-(4) should be transformed with account for the properties of 

light observed experimentally. If light is propagating in the direction n, momentum 

q is oriented in the same direction. Choosing this direction along the z-axis implies 

0xq   and 0yq  . According to Eq. (8), this is possible under the condition that 

0z zE H  , whereof it follows that light waves are transverse electromagnetic 

waves. Since light propagates with velocity c, all the vectors are functions of x, y, 

and ctz  . In a dispersive medium two velocities are distinguished: the phase 

and the group velocity. Assuming vacuum as a non-dispersive medium, the two 

velocities coincide. Then the x-component of Eq. (1) is: 

  0x x yE P H



  


,              (9) 

whereof xxy PEH  .  

In a similar way, for the y-component of Eq. (1) and the x- and y-compo-

nents of Eq. (2): yyx PEH  , yx PM  , xy PM  . These components of 

Eqs. (1) and (2) merely define simple relations between the x- and y-components of 

the vectors saying nothing about the dependence of these functions on x , y  and 

 . Interesting that the z-component of Eq. (1) coincides with Eq. (3), and the z-

component of Eq. (2) – with Eq. (4). As a result, the Maxwell equations are 

reduced to the two equations: 

    0z
x x y y

P
E P E P

x y 

 
    

  
,       (10) 

0
y x z

E E M

x y 

  
  

  
.             (11) 
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A charge moving in a medium induces electric polarization and magne-

tization, P being oriented along the direction of E while M – along the direction of 

H. Since there are no charges in vacuum, it seems reasonable to put xP  and yP  

equal to zero. Then x x y yD E H B    and y y x xD E H B      as in the 

traditional description of electromagnetic field in vacuum, and only z-components 

of vectors P and M remain. In general, PnP , MnM , and we can consider the 

polarization and magnetization in vacuum as induced by the momentum of  

electromagnetic field. The field is depending on the transverse coordinates x and y 

only at nonzero zP  and zM .  

It seems that potentials A  and   defined in [4] as 

AB rot ,                                                                                  (12) 

1
grad

c t


   



A
E              (13) 

are more fundamental quantities in the quantum mechanics than vectors E , D , 

H , and B . Indeed, the interaction of particles with the electromagnetic field in 

Schrödinger’s and Dirac’s equations is defined by potentials. Describing photon as 

a quantum object, one may also use potentials and put 0 . In our coordinate 

system 0zA ,  /xx AE ,  /yy AE , therefore Eqs. (10) and (11) may be 

rewritten as 

0
yx

z

AA
P

x y


  

 
,             (14) 

0
y x

z

A A
M

x y

 
  

 
.             (15) 

If 0zP , 0zM , the functions xA  and yA  do not depend on x  and y  and 

are arbitrary functions of  . Then, as usual, the vector potential of a mono-

chromatic wave can be presented as 

 ik ikae a e   A e ,            (16) 

where e  is the unit polarization vector,  

 a  is the amplitude,  

 a  is the complex conjugate value,  

 the wave vector ck / .  

Quantization of the light field (see e.g. [5]) yields Nba  ,   Nba , 

kVcN /2  , where b  and b are the creation and annihilation operators of 

photons, respectively, and V is the quantization volume.  

3. SEARCH OF NONLINEAR EQUATION FOR THE PHOTON 

Now the task is to modify Eqs. (14) and (15) to include the quantum 

properties of light and make them nonlinear. Actually, this means that zP  and zM  
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should be presented as functions of xA , yA  and their derivatives. Assuming that 

photon propagates along a straight line in the direction of z-axis it is natural to use 

cylindrical coordinates with polar radius   and polar angle   defined by 

equations 0 cosx x    ,  sin0  yy . Equation (16) well describes the 

emission and absorption of photons. Since function (16) does not depend on the 

polar angle  , the functions xA  and yA  are axially symmetric depending only on 

variables   and  . However, this leads to a difficulty in Eqs. (14) and (15): the 

derivative with respect to x  is proportional to 0xx  , and the derivative with 

respect to y  is proportional to 0yy  . Thus, zP  and zM  must also contain such 

terms. We propose the following representation for zP  and zM : 

0( )
zP T




 

r r
A  ,            (17) 

 0( )
zM T




  

r r
n A ,             (18) 

where n is the unit vector in direction z,  

 T  is a scalar operator applied to A.  

Equations (14) and (15) can now be presented as 

0x
x

A
TA




 


 ,            (19) 

0
y

y

A
TA




 


.                  (20) 

Further, supposing the light being linearly polarized along the x-axis when 

0yA , we will start from Eq. (19). Since little is known about the structure and 

properties of vacuum, we are proceeding with some dimensional, mathematical and 

physical reasoning as follows. Each term of operator T  is related to a dimensional 

or a dimensionless parameter. The purpose is to construct an equation of minimum 

unknown parameters. Operator T  must comprise terms containing derivatives with 

respect to  , for example,   /2 , 22
3 /    or 22

1 / l . The dimension of 

operator T  is the reciprocal distance, so parameters 2  and 3  are dimensionless 

while dimension of 1l  is the distance; therefore, it is not reasonable to include the 

last term in the equation. The nonlinear Schrödinger equation containing a term of 
2

xE  is very popular in the nonlinear optics [6]. We choose two nonlinear terms 

2
xA  and  d

2
xA  having the dimension of energy. Multiplying derivative terms 

by c , we obtain the equation: 

2
2 2

1 2 3 4 52
d 0x x x

x x x x

A A A
c c c A A A A

       
  



  
    

  
,   (21) 

where i  are dimensionless parameters.  
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Most of the quantum mechanical equations are written in energy 

representation: the operators of kinetic and potential energy are applied to the wave 

function. The Dirac equation contains operators such as xc  / . So, Eq. (21) 

looks like a quantum mechanical equation but nonlinear. By inserting FcAx   

and choosing i1 ,  22  ,  3 ,  254  , Eq. (21) is reduced to a 

generalized nonlinear Schrödinger equation (GNLSE) [7–10]: 

2
2 2

2
2 d 0

2

F F F
i F F F F


  

  


   
     

    

 .            (22) 

The GNLSE is equivalent to the equation of spin evolution of the Heisen-

berg spin chain with inhomogeneities at the continuum limit [7–10]. The difference 

between Eq. (22) and the earlier derived equation for the dynamics of Heisenberg’s 

spin system is the derivative /F    in Eq. (22) instead of derivative /F t   with 

respect to time in the spin system. As seen from Eq. (22), parameter   determines 

the scale of polar coordinate  . If 0 , then F  does not depend on  , and for a 

monochromatic wave  expF ik . We suppose Eq. (22) to be suitable for 

describing the photon. 

4. ONE-SOLITON SOLUTION 

Equation (22) has been shown to be integrable [10]. Its one-soliton solution can 

be presented as 

     sech exp ,F kb k b i              ,            (23) 

where 

ctz  ,             (24) 

   20
2

0 yyxx   ,   (25) 

2

2( 1)

s
d

s



 ,             (26) 

 
 

2 2 2/

d k
a

d k d s

 


 




 
 ,             (27) 

 
 

2 2 2

/

/

d s
b

d k d s


 


 
 ,             (28) 

     , 2arctan 1 /k a s k d            .             (29) 

Here   /2k  is the wave vector, 

   is the wavelength, and  

 s  is a dimensionless parameter.  

In the one-soliton solution of Eq. (22) derived in [10] the factor with arctan 

in the phase is absent. We suppose that one-soliton solution (23) describes a 

linearly polarized photon of frequency kc  propagating along the z-axis.  
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The electric field of the photon is  /FcEx   and the energy density 

(7) is equal to 4/
2

xE . Full energy W of the photon is equal to the integral of 

this density over the whole space: 

2

2
0 0

d d d
4

c F
W z

   
 

 



   


.             (30) 

Evaluating the integrals and equating W to the photon energy  , we obtain 

the equation: 

2

2 2

4 1
1 arctan

21 3( 1)

s s
s s

s s

 
   

 
,             (31) 

which connects two dimensionless parameters s  and  . If   is small, then s  is 

large and approximately equal to  26/1  .  

As follows from Eqs. (27) and (28),   10 a  and   sb /10  . The 

scale of coordinates   and ctz   is determined by wavelength k/2  . For 

small   the transverse size of photon is by factor 1  larger than  , the 

longitudinal size surpassing   by factor 2 . Therefore, the region around the 

center of the photon where vector potential xA  is proportional to the classical value 

 ikexp  is large enough. The vector potential decreases exponentially at   

and decreases as 2  with increasing  . The frequency of oscillation of the field 

is  a  and decreases from its maximum value   on the symmetry axis to zero 

at  . 

For arbitrary polarization of the photon, both Eqs. (19) and (20) must be 

taken into account. Defining 

   2211 exp,exp  iFccAiFccA yx    ,            (32) 

where ic  and  i  are real constants and 122

21
 cc , we obtain that 

22
FcA , 

where  function F  is defined by Eq. (23). 

If the photon propagates in an arbitrary direction  zyx kkk ,,k , the vector 

potential of the photon is Fc e , where the unit vector e  is orthogonal to k  

direction: 0ke . Function F  of the one-soliton solution is given by expression 

(23) where trk  stands instead of tkz   and    20
2

0
2

rkrkrrk   – 

instead of k . 

5. CONCLUSIONS 

The proposed nonlinear equation for the vector potential of collinearly 

propagating photons is similar to the generalized nonlinear Schrodinger equation 

(GNLSE). The one-soliton solution of this equation describes a three-dimensional 
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object with corpuscular and wave properties that could be identified as photon. The 

cubic terms of xA  in Eq. (21) are responsible for the calculated energy of the 

photon proportional to  . A problem remains with the unknown constant   

determining the size-scale of photon. The constant is supposed to be small; 

theoretical arguments or experimental possibilities to evaluate it are not easy to 

find. Probably, this constant is proportional to the fine-structure constant or its 

power.  

The proposed model is only a model. It seems to be of importance here to 

find a two-photon solution of the generalized nonlinear Schrödinger equation 

(GNLSE). 
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FOTONA SOLITONA MODELIS 

I. Bērsons 

K o p s a v i l k u m s  

Fotona aprakstam tiek piedāvāts trīsdimensiju solitona modelis ar daļiņas un 

viļņa īpašībām. Tiek apskatīti Maksvela vienādojumi un pieņemts, ka gaisma 

inducē vakuuma polarizāciju un magnetizāciju tikai gaismas izplatīšanās virzienā. 

Konstruētais nelineārais vienādojums vektora potenciālam ir līdzīgs vispārinātajam 

nelineārajam Šrēdingera vienādojumam un satur bezdimensionālu konstanti , kura 

nosaka solitona izmērus un kura varētu būt maza. Atrastais vienādojuma vien-

solitona atrisinājums tiek identificēts kā fotons.  

28.11.2012. 


