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In the work, the temperature field model is developed for the absorber 

of a round-pipe collector. As distinguished from previous models when the 

temperature of liquid was assumed to be constant over the entire pipe cross-

section, the results obtained clearly show the temperature variations in the 

absorber’s cross-section. In the work, optimal values are found in the work 

for geometrical parameters of the collector (i.e. the plate thickness and the 

pipe diameter) that allow the highest possible temperature of liquid to be 

achieved. 
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1. INTRODUCTION 

Solar collectors are finding ever increasing use in households for hot water 

preparation. From diversified solar thermal collectors those of flat-plate absorber 

type are simple in design and maintenance, at the same time being relatively cheap. 

However, while the temperature field has been calculated for different absorbers of 

the type (see, e.g. [1–4]), no relevant data are found for the conventional round-

pipe absorber. Therefore, over many years we have concentrated attention on 

modelling the cross-sectional temperature field for the round-pipe absorbers of 

solar collectors [5–11]. 

In solving the cross-sectional temperature field for a round-pipe absorber [5], 

the periodical cross-sectional domain is divided into three sub-domains where the 

first sub-domain is the plate between pipes, the second – a pipe’s wall, and the 

third – the liquid; as a result, the temperature field expressions have been obtained 

for all the three sub-domains. In works [6, 7] the temperature field obtained was 

simplified. To define its variations in time, such a field was found by solving the 

Laplace equation under the non-stationary time-dependent conditions [8]. The 

obtained results evidence that the non-stationarity might not be taken into account 

in long-lasting sunny weather, while it affects considerably the temperature field in 
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a short term (e.g. in cloudy weather). The temperature field has also been found for 

a square-pipe absorber [9] as more technological in design.         

In the present work, the temperature field model is proposed for the absorber 

of a round-pipe collector. As distinguished from [5], in this work the temperature 

of liquid is assumed to be constant over the entire pipe cross-section. Such an 

assumption significantly simplifies the calculation while not changing the physical 

essence. 

2. FORMULATION OF THE PROBLEM AND  

ITS SOLUTION 

The temperature field is sought for the absorber shape shown in Fig. 1. 

 

 
Fig. 1. A conventional absorber.  

 

Assuming that the process is stationary, the temperature field is described by 

the Laplace equation [12-15]:  
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To solve this equation, the boundary conditions are set for the collector 

absorber’s cross-section possessing periodicity. The periodical domain is divided 

into two parts, D1 and D2. In part D2 the Laplace equation is written in polar 

coordinates. 

 

 
Fig. 2. Absorber cross-sections with the set boundary conditions. 
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On the Sun-oriented surface the incidence of solar radiation is perpendicular 

to all its points except the pipe surface, for which the perpendicular radiation 

component is calculated. The area of periodical cross-section and the boundary 

conditions are shown in Fig. 2. The bottom part is isolated, therefore, the heat flow 

perpendicular to the isolated surface is zero. The same situation is for the symmetry 

axes AO1, GF and DE. On the Sun-facing surface the heat flow is proportional to 

the solar radiation density. In turn, on the surface where the cooling liquid meets 

the internal wall of a pipe the heat flow is described by a conventional heat flow 

equation where Ts is the liquid temperature and T is the temperature of a pipe’s 

inside wall.  

To simplify the analytical solution of Laplace’s equation the dimensionless 

parameters are used [8-11]: 
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The Q and Bi parameters are defined by the formulas: 
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The dimensionless temperatures are written as 
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where 

sTTT  22 .  (7) 

The designations in the formulas and figures describing the temperature field 

of the absorber  are as follows. 

2b  is the distance between the pipe axes, m; 

2h0  is the thickness of the absorber’s plate, m; 

r1 is the internal radius of the pipe, m;  

r2  is the external radius of the pipe, m; 

q  is the solar radiation density, W/m
2
; 

  is the thermal conductivity of the absorber, W/m K;          

   is the coefficient of convective heat transfer from the surface, W/m
2
K;  

Ts  is the temperature of liquid, K;  

T0 is the initial temperature of liquid, K. 
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Having written the boundary conditions in dimensionless parameters and 

solving the Laplace equation, we obtain the following expression for the tempe-

rature field in domain D1: 
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where 
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The temperature field in domain D2 is sought-for in polar coordinates, with 

its dimensionless form written as 
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3. RESULTS AND DISCUSSION  

Figure 3 shows the temperature field on the collector surface with the para-

meters given in Table 1 for different b (i.e. distance from the plate centre to the 

pipe centre). The temperature in the direction from the plate centre to the pipe is 

decreasing – as might be expected since the liquid flowing through the pipe has a 

lower temperature than in the plate, and this difference creates a temperature 

gradient in the direction of which the heat is flowing. 

 
Table 1 

The output data for the model 

Plate 

thickness,  

h,  m 

Pipe 

external 

diameter, 

m 

Pipe 

internal 

diameter, 

m 

Solar 

radiation 

density, 

q, W/m2 

Plate 

thermal 

conductivity,  

λ, W/m K 

Convective 

heat 

transfer, α, 

W/m2 K 

Initial  

temperature, 

K 

0.001 0.012 0.01 1000 385 1000 373 
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Fig. 3. Temperature field at different b values. 

 

Figure 4 shows the temperature field in the pipe coating at variable b value. 

As compared with temperature variation in the plate (Fig. 3), in the coating it is 

much less, but in any case at increasing b the temperature difference between the 

top of pipe and the point of its contact with the plate increases. 

 

 
Fig. 4. Temperature variations on the coating surface at different b values. 

 

In Fig. 5 the temperature of liquid is shown in dependence on b value for 

different outside diameters of the pipe and a constant thickness of its wall (1 mm). 

At the same pipe diameter, with b increasing the temperature of liquid decreases. In 

physical terms this is explainable with the fact that the temperature gradient should 

be in the whole cross-section periodical system as implied by the mathematical 

expressions obtained for the temperature field. If the distance to the lowest 

temperature point is increasing, the difference between the initial temperature and 

the lowest one (the temperature of liquid in the given model) also increases.  

It is seen that at increasing pipe diameter the difference (as compared with 

that for the previous sizes) becomes smaller, which points to a critical value for the 

diameter after which it is of no use to increase this value. 
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Dependence of the liquid temperature on the pipe diameter at a constant b 

value (0.07 m) is illustrated in Fig. 6, where the curve has a saturated character. It 

could be seen that at the diameter value of 12 mm the liquid temperature is 

changing but slightly with increasing diameter. Therefore, this curve shows the 

way of optimizing the pipe diameter. 

 

 
Fig. 5.  The temperature of liquid vs. b value at different pipe diameters  

(the wall thickness is 1 mm). 

 

 
Fig. 6.  The liquid temperature vs. pipe diameter.  

 

The dependence on b value at different plate thicknesses is shown in Fig. 7 

(the initial parameters are as given in Table 1, the pipe diameter is 12 mm, the pipe 

wall thickness is 1 mm). At increasing plate thickness the dependence of liquid 

temperature on the initial temperature weakens in the same manner as it is for the 

case with increasing diameter (see Fig. 5).  

The curve shown in Fig. 8 also possesses a saturated character, which evi-

dences that there exists a threshold value of the plate thickness after which its 

increasing is of no sense. 
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Fig. 7. The liquid temperature vs. b  value for different plate thicknesses (h). 

 

 
Fig. 8. Liquid temperature vs. plate thickness (h). 

 

From the above it follows that a compromise is to be found for the difference 

of liquid temperature from the initial. If this difference is large (i.e. b value is large, 

with the pipe diameter and the plate thickness being small), the heat flow from the 

plate centre to the pipe will be large, since this flow is directly proportional to the 

temperature gradient. In turn, if this difference is small (i.e. b value is small while 

the pipe diameter and the plate thickness are large), the heat flow will be weaker. 

In any case, of importance is to achieve that the heat flow be large; at the same 

time, if b value is large and the pipe diameter is small, the amount of liquid per 

area unit will also be small, which would mean less per area unit power for the 

solar collector. Clear enough that the power decrease will be compensated at some 

time moment by a heat flow increase.  

The proposed mathematical model shows that in all the cases there exist 

threshold values for the plate thickness and the pipe diameter – i.e. some optimal 

values that are not to be increased further.  
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4. CONCLUSIONS 

In the work, the cross-sectional temperature field has been obtained for the 

solar collector’s absorber under the assumption that the heat flow is stationary. The 

results clearly show the temperature variations in the absorber’s cross-section.  

The dependence of liquid temperature on different geometrical parameters 

points to the existence of their optimal values.  

Under the conditions when solar radiation is strong and constant for a long 

time, it is expedient to make the collector’s absorber with a small distance between 

the plate and pipe centres, with a large pipe diameter (up to 14 mm) and a large 

plate thickness (up to 1.2 mm); at the same time, when cloudiness dominates, it 

would be better to design the solar collector with a greater b, a smaller pipe 

diameter (from 6 to 8 mm) and a small plate thickness (0.5 mm). 
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SAULES KOLEKTORA ABSORBERA ŠĶĒRSGRIEZUMA TEMPERATŪRAS 

LAUKS APAĻAS CAURULĪTES GADĪJUMĀ – FINĀLA MODELIS 

V. Barkans, P. Šipkovs, M. Vanags 

K o p s a v i l k u m s 

Darbā iegūts temperatūras lauks saules kolektora absorbera šķērsgriezumam, 

uzskatot, ka siltumplūsmas process ir stacionārs. Rezultāti labi parāda temperatūras 

izmaiņu absorbera šķēsgriezumā.  

Šķidruma temperatūras atkarība no dažādiem ģeometriskajiem parametriem 

liecina, ka tiem eksistē optimālas vērtības, kuras nav jēgas palielināt, jo tas neatstāj 

ietekmi uz šķidruma temperatūru.  

Apstākļos, kuros saules radiācija ir liela un konstanta ilgu laika periodu, 

kolektora absorbers būtu jātaisa ar mazu b vērtību (attālumu no plates centra līdz 

caurulītes centram), lielu caurulītes diametru (līdz 14 mm) un lielu plates biezumu 

(līdz 1,2 mm). Apstākļos, kuros dominē mākoņainība, labāk konstruēt saules 

kolektoru ar lielāku b vērtību, mazu caurulītes diametru (no 6 līdz 8 mm) un mazu 

plates biezumu (0,5 mm). 

29.01.2013. 


