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The power estimation is performed for the medium/low voltage transformer of 

a low voltage network. The factors to be accounted for in the estimation are the load 
density and the fed zone shape. From variously shaped fed zones that of hexagonal 
shape compactly covers a greater territory and has better indices as compared with 
rectangles and triangles. The study is framed on an apt canonical model − a circular 
fed zone with constant continuous load density. The model can be used for 
comparison of indices at the discrete load dislocation in hexagonal or squared fed 
zones, extending the results obtained for a circular zone using relative ratios. The 
transformer power is determined by the fed zone radius, which has a natural limit, 
since the voltage deviation for the farthest consumer should not exceed the allowable 
value. Under these conditions, optimization can be performed by a given load density, 
changing the radius of the fed zone and the density of current in phase conductors. 

Key words: electricity consumers, electricity supply efficiency, energy loss, 
fed zone, medium/low voltage transformer, power loss, voltage loss.  

1. INTRODUCTION 

The last conversion stage of industrial frequency voltage is its medium/ low 
transformation for the final consumer. The conditions of electricity supply differ 
for urban and rural areas; therefore, to achieve the maximum economic efficiency 
the analysis is needed that would take into account the factors influencing the 
economic indices. The ultimate aim is to determine the power of a step-down 
medium/low voltage transformer so that the maximum efficiency is achieved, with 
the least annual costs on the transformer and the corresponding low-voltage 
network of a fed zone, and, respectively, the least capital investments and costs of 
electricity losses, preserving at the same time the quality of electricity. 

To carry out research of the kind, it is necessary first to choose the shape of 
the fed zone. Next, an appropriate mathematical model involving all the influential 
quantities should be worked out. 

The medium/low voltage transformers have been in use from the very 
beginning of the electricity era; no special attention was then paid to the efficiency 
of network operation, and unacceptable was only deviation from the normal volt-
age at consumer. Nowadays, this aspect of the problem is given proper attention − 
not only abroad (e.g. [1]) but also in our country. In [2], the economic issues are 
considered based on which appropriate dependences are found as to the optimum 
size of a zone supplied from a higher voltage substation. Paper [3] pays more 
attention to load forecasting. 
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The low-voltage network is the lowest stage in the power system's hierarchy, 
which also deserves attention. When optimization has been done for a lower stage, 
solving the problems of a higher stage can be initiated. 

Search for possible dependences should be done based on some presum-
ptions, e.g.: the capacity of transformers and the cross-section area of conductors 
can vary gradually; the load density is continuously distributed throughout the 
entire fed zone; the low voltage is constant and equal to the nominal (400 V); the 
simultaneity factor is equal to unity (the loads in the entire zone change simul-
taneously); the transformer capacity corresponds to the maximum load. This is an 
ideal case considered in the framework of the study. The influence of other factors 
can be examined separately for every real case. 

2. THE SHAPES OF FED ZONES 

The conventional shape of a fed zone is hexagon. The zone should meet two 
requirements: it should tightly fit other ones for covering all relevant territory; it 
should have the best length ratio. Among diversified shapes there are many that 
meet the first requirement. The simplest among them are: the equilateral triangle, 
the square, and the hexagon. As concerns the second requirement, it is the circle 
that has the best length ratio kleci (Fig. 1a) since  

RR
Rkleci

318.0
2 ==

π
, (1) 

but it does not meet the first criterion. 
The length ratio shows the distance of a supplied zone’s farthest point from 

the centre of this zone as compared with its area. The less the length ratio, the less 
the voltage drop is from the centre to the farthest point and the less power losses 
are. This index for a square and an equilateral triangle is (Fig.1b,c): 
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From the three, the second criterion is met best by a circle, and worst − by a 
triangle. Six such triangles form a hexagon (see Fig. 1c,d and Eq. (2)). To compare 
these length ratios with the best (for a circle) we can introduce relative length ratios 
as 

Fig. 1. Shapes of the fed zone: a – circle; b – square; c – equilateral triangle; d – hexagon. 
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Of significance are also the area ratios: 
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==
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If the fed territory is small enough, any other shape fitting this territory is 
relevant. The length ratios and the area ratios can be helpful for analyzing the 
parameters of a fed zone (circular as the most suitable for analysis). Using an 
appropriate length ratio we can model the low voltage line length of a square or a 
hexagon approximating them by a circle, while employing the area ratio we can do 
this for the transformer capacity. Any parameter of a fed zone can be ideally re-
presented by that of a circle if its relative ratio is independent of the zone radius R. 

3. APPROACH TO THE PROBLEM 

To estimate the efficiency of a low-voltage network, the annual costs should 
be evaluated. In accordance with [4], the annual costs for a line are: 

)())(( max βτβ ′′+′Δ+++= Σ PlbFapiCl , (5) 

where i  is a bank’s loan interest, %;  
 pΣ  are the costs of depreciation, maintenance and servicing,  %;  
 a  are the fitted costs of a line’s construction, LVL/m;  
 b  is the cost depending on the cross-section area F of a phase wire, 

LVL/(m⋅m2);  
  l is the line length, m;  
 ΔPmax  is the maximum power loss for the entire line length, W; 
  β′        is the cost of a line’s power losses, LVL/Wh;   
 β′′  is the peak power cost, LVL/W;  
 τ  is the time of maximum power losses, h. 

Denoting the elements of formula (5) as 

aCapi =+ Σ 100/)( ;    bCbpi =+ Σ 100/)( ;    wC=′′+′ βτβ , (6) 

we obtain: 

maxPCFlClCC wbal Δ++= . (7) 

All the lines of a low-voltage network can be divided into trunk lines and 
branch lines (Fig. 2). A trunk one with straight branch lines (Fig. 2a) is better fit 
for urban operation with cables laid along the streets. Among other models met in 
practice is the leaf model (Fig. 2b); in the canonical model with circular branches 
(Fig. 2c) the circular shape is employed to simplify mathematical expressions. 
Other models can be reduced to the canonical model by appropriate relative ratios. 
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Fig. 2. Sectors of the trunk line in a fed zone: a – model with straight branch lines;  
b – leaf model; c – canonical model with circular branch lines; 

1 – medium/low voltage transformer; 2 – trunk line; 3 – branch line. 

ba 

2 

A fed zone has the total length lt of trunk lines with the total losses ΔPt, and 
the total length lb of branch lines with the total losses ΔPb. The trunk lines are 
composed of thicker wires, since their current is greater than that of branch lines. 
The cross-section of a trunk line wire is constant and should be calculated 
corresponding to the current at its beginning. The same holds for all branch lines, 
with cross-section calculated corresponding to the maximum current in the branch 
lines. With such presumptions formula (7) will look as 

bwtwbbbttbbatanw PCPClFClFClClCC Δ+Δ++++= , (8) 

where  Cnw  is the annual costs of the network.  
To apply (8) for a square or a hexagon, the line lengths should be multiplied 

by the accordingly calculated length ratio. By the area ratio the maximum current 
can be modelled, with radius R remaining the same for all shapes. Expression (8) 
cannot characterize the efficiency of the network; this parameter will be shown when 
we relate the annual costs to the delivered energy (in compliance with [5]). For the 
simplicity sake, the per unit quantities will be sought-for in the form of per ampere 
(pA) notation, that is, by dividing (8) and its components by the maximum current 
Imax of the fed zone; the components with the pA notation will have index pA: 

++++== pAbbbpAttbbpAatpAa
nw

ntpA lFClFClClC
I
CC )()(
max

. 

bpAwtpAw PCPC Δ+Δ+ . (9) 

In the ultimate estimation, the quantity of interest is the cost of delivery of 
one kWA energy, which is given by the expression: 

ϕcos3 m

nwpA
nwpu UT

C
C = ,       (10) 

where  U  is the low phase-to-phase voltage;  
 Tm  is the time of maximum load. 

As follows from (8), to consider a network we should know rather a large 
number of quantities. 

When considering the efficiency of a low-voltage network we should take 
into account a medium/low voltage transformer unit (a transformer substation). The 
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annual costs for a transformer unit consist of the annual charges for the investments 
and servicing as well as of the costs of its losses: 

nlwnlldwtutu PCPCKpiC Δ+Δ++= Σ 100/)( , (11) 

where  Ktu  is the price of a transformer unit; 
 ΔPld  is the load loss; 
 ΔPnl  is the no-load loss, and 

  ββ ′′+′= TCwnl , (12) 

with T being the number of hours in a year. 
The summary costs (CΣ ) of the transformer unit and the network according 

to (8) in pA and per unit notations are: 

nwtu CCC +=Σ ;    nwpAtupApA CCC +=Σ ;     nwputupupu CCC +=Σ .  (13) 

The CtupA and Ctupu values are determined in the same way as CnwpA and Cnwpu. 
The most favourable power of a medium/low voltage transformer will be 

when the summary cost CΣ in (13) reaches minimum. 

4. TRUNK LINES 

In a trunk line the power loss (ΔPt) of a fed zone is n times that of a zone 
sector (ΔPts), n being the number of equal sectors in this zone. The radial 
elementary area dA of such a sector is (see Fig. 3): 

drrdRdA sαλ == . (14) 

The current taken from a unit area dA is: 

rdrdAdi sσασ == , (15) 

where  αs  is the angle of the sector; 
 σ  is the current density of the consumer’s load. 
 

 
Fig. 3. Losses in a trunk line. 

The current in the trunk line at distance r from the transformer unit at the 
point 0 is: 
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∫ −==
R
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sr rRrdri )(

2
22σασα . (16) 

The elementary power loss in this trunk line at the same distance from the 
transformer unit is: 

drrRdrRiPd s
trts

222
22

0
2 )(

4
−==Δ

ασ
,     (17) 

where  R0t  is the specific active resistance of a trunk line. 
Integrating from 0 to R we obtain: 

15
2 5

0
22 RRP ts

ts
ασ

=Δ . (18) 

Applying the dependences: 
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= ;    ;    2
max RI σπ=

tt
t F
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γ
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0 = ;    

t
t nj

I
F max= , (19) 

where  Imax  is the maximum current of a transformer unit; 
 γt , Ft  are the specific conductance and cross-section area of the trunk line 

wire, respectively; 
 jt  is the current density in the trunk line wire, 
we obtain a concise mathematical formula for the trunk line loss of one phase in 
the sector: 

t

t
ts n

RjIP
γ15

8 max=Δ .  (20) 

The losses in three phases in the entire fed zone will be 3n times greater, i.e.: 

t
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33
max 0272,5

15
24

15
24

===Δ .  (21) 

The trunk line extends from 0 to R – Δr/2. Of the losses, according to for-
mula (18), the loss of the part not reached by the trunk line is to be subtracted. The 
sector current at a distance R – Δr/2 taken from area A (i.e. peripheral current irper) 
is: 

2
)4/( rrRAi srper
Δ

Δ−≈= σασ ,     (22) 

The loss of a sector’s peripheral area A is: 

24
)4/(

23
1 3

0
222

0
2 rRrRrRiP ts

trpertsper
ΔΔ−

=
Δ

=Δ
ασ .      (23) 

Comparative calculations by formulas (21) and (23) have shown that the 
peripheral losses are insignificant. Hence, the trunk loss should be calculated by 
formula (21). 
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The length of one trunk line is 2/rRlts Δ−= , while that of all trunk lines 
of a zone is: 

tt nRkrRnl =Δ−= )2/( ,       (24) 

where  kt  is a trunk coefficient: 

R
rRkt

2/Δ−
= .       (25) 

 
Fig. 4. Trunk losses in a sector of  1/4 square; 1 – trunk line; 2 – sector. 

In the case of a square it is natural to have four sectors, i.e. n = 4. The 
elementary current of this sector (see Fig. 4) is: 

∫ −′==
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The elementary loss is: 

drRrRdrRiPd ttrts 0
2222

0
2 )( −′==Δ σ   (27) 

The sector loss will be: 
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The square zone consists of four such sectors (n = 4), hence: 
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Therefore for three phases of the entire zone (multiplier 3×4 = 12) we obtain: 

t

t
tsq

RjP
γ
σ 3

2627.2=Δ .  (30) 

The line lengths are found in a similar manner. 
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5. BRANCH LINES 

Figure 5 shows the area under consideration with continuously distributed 
load. Current Δis at the beginning of cross-hatched strip yΔx at distance x from the 
zone centre O is: 

xxyis Δ=Δ )(σ .  (31) 

 

Δx 

Fig. 5. Definition of branch losses at continuously distributed load. 

The active resistance of strip yΔx is: 

xa
xy

F
xyR

bsb
s Δ

==Ω γγ
)()( ,      (32) 

where  γb is the specific conductance of branch line wire;  
 aΔx  is the cross-section area of the strip; a is an as yet unknown 

coefficient.  
The losses ΔPs of the strip are: 

a
xxy
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xyxxyRiP

bb
sss γ
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If such strips cover the entire area, the total losses will be: 

∑
Δ

∑ =Δ≈Δ
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3
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Consequently, we can write the exact expression for losses as 

∫=Δ
max

0

3
2

)(
3
1 x

b
b dxxy

a
P

γ
σ .  (35) 

At the maximum length ymax, current ismax through the strip (adx) at its 
beginning is: 

dxxyis )(maxmax σ= .  (36) 

The strip cross-section area is: 

bj
dxyadx maxσ

= ,  (37) 

where jb is the adopted maximum current density in the wires of branch lines. 
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Hence, coefficient a will be: 

bj
ya maxσ

=     (38) 

and the losses of the entire shaded area: 

∫=Δ
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3
1 x

b

b dxxy
y
jP

γ
σ .  (39) 

 

  α/2 

  2Δr/αs 

Fig. 6. Losses in branch lines.    

Now, a half of the sector (Fig. 6) of a circular fed zone will be considered. 
The consumers of the shade-free horizontal fragment are fed from a trunk line, 
while those of shaded areas are fed from a branch line. However, the branch line 
collects the load from the shade-free horizontal fragment to the sector’s radial 
boundary. Hence for the shaded areas: 
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22
rrrry s

s Δ−=
Δ

−= αα ;  (40) 

R
s Rk

n
rRxyy πα

=
Δ

−== )
2

(
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)( maxmax .  (41) 

The integration should be done from 2Δr/αs to R. For this sector shape, 
observing (39)–(41), we obtain the branch losses of shaded areas per phase of the 
entire sector as 

drrrrr
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jP s
R

R
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tsb

b
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s
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2 Δ−∫ Δ−=Δ
Δ
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αγ
σ

α

. (42) 

The losses of the shade-free fragment are equal to the square of current at the 
beginning of shaded area multiplied by the resistance over Δr/2 length: 

∫ ΔΔ−=Δ
Δ

R

r
s

tsb

b
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s

rdrrr
Rk

jP
α
α

αγ
σ

/2

23)(
6
1 .  (43) 

Factor 3 before Δr means that at Δr/2 of the shade-free area the current is 
constant, since here the distributed load is connected not to a branch line but to the 
trunk one. 
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The branch line extends to (αs/2)r – Δr/4. Hence, losses ΔPbhs of the hori-
zontally shaded area of the sector are to be subtracted from losses (ΔPbsh + ΔPbus), 
i.e.: 
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Summing up and observing (19) for αs, we will have the sector branch losses as 
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A zone has 3 phases and n sectors, therefore: 
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Fig. 7. View of a fed zone sector: 1 – branch lines; 2 – trunk line. 

Branch lines are arranged beginning from 2Δr/αs up to R – Δr/2, and do not 
reach the radial boundary by the value of Δr/4 (Fig. 7). The number of branch lines 
in a sector is: 

r
Rk

r
nrR

r
rrRm bs

Δ
=

Δ
+Δ−

=
Δ

Δ−Δ−
=

ππα 2/))((2// , (47) 

where  kb  is a branch coefficient: 

R
nrRkb

ππ 2/))(( +Δ−
= . (48) 

If these lines were extending to the sector’s radial boundary, on the entire 
zone scale there would be m concentric circles with the radii determined by an 
arithmetic series with base Δr and number m. However, beginning with the first all 
the consecutive circles have a radial increase of approx. Δr. Then the total length lb

’ 
of branch lines will be: 
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Each line does not reach the sector radial boundary by Δr/4. Then the total 
peripheral shortage lbper in the zone will be: 

22
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Hence, the total branch line length of a fed zone is: 
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Fig. 8. A striped fed zone: a – analytical version; b – real version;  

1 – transformer unit; 2 – branch line; 3 – consumer.  

In the example below, the losses of branch strip (Fig. 8a) are calculated: 
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Three-phase losses of the strip in Fig. 8a are: 

∫
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==′Δ
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b

b

b
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22 σ
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σ .           (53) 

From quantity ΔPs′ the peripheral loss ΔPsper is to be subtracted. 
The elementary peripheral loss is: 
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Since peripheral loss can be obtained as 

∫
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the strip losses ΔPs are: 
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6. COMPARISON WITH THE DISCRETE LOAD MODEL 

So far the consideration has concerned a continuously distributed load. We 
shall calculate the same quantities (losses and line lengths) in the discrete-load 
model with a hexagon (Fig. 9) and a square (Fig. 10). Both the models with 
discrete loads have the same radius (see Fig. 1) of 297 m and the load density  
σ = 0.00118 A/m2. Each discrete load is situated in the centre of a 30×30 m square,  
 

2 

5 

4

3 

1 

Δr 

Δr/4 

Δr/2

4

5

Fig. 9. Example of a hexagonal fed zone; 1 – medium/low voltage transformer; 2 – zone 
boundary; 3 – electricity consumer; 4 – trunk line; 5 – branch line. 
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hence the load current (that of a single consumer) is idl = 0.00118×30×30 = 
1.062 A, while Δr = 60 m, Δr/2 = 30 m, Δr/4 = 15 m. The current density of 
aluminium (specific conductance γ = 32 A/mm2) phase wires in all models is jt = jb 

= 1 m/(Ω·mm2).  
 

 
Fig. 10. Example of a square fed zone; 1 – medium/low voltage transformer;  
2 – zone boundary; 3 – electricity consumer; 4 – trunk line; 5 – branch line. 

To show the way in which losses in hexagonal and squared zones with 
discrete loads are handled, we shall calculate the losses in the strip model 
according to Fig. 8, assuming the length to be y = 120 m. From the beginning, the 
cross-section area of the strip model phase wires was taken F = 10 mm2. The 
current density in the phase wires is job = Imax/F = 0.00118·120·60/10=0.85 A/mm2.  

By virtue of (53) the strip losses are: ΔPs′ = 0.00118·0.85·1202·60/32 = 
27.081 W; according to (55), the peripheral losses are ΔPsper = 0.00118·0.85·604/ 
(192·32·120) = 0.0176 W, and according to (56) we have: ΔPs = 27.061 – 0.0176 = 
27.0.63 W. 

Now, we shall calculate the losses of discrete consumers. The phase wire 
resistivity is: 003125.0)1032/(1)/(1/ =⋅==Ω FR m γ  Ω/m. For three-phase losses, 
when the current of one phase is used for loss calculations, the resistance of a phase 
wire should be taken three times greater. Then the resistance of a Δr/4 long wire 
will be RΔr/4 = 3·0.003125·15 = 0.140625 Ω; other resistances are: RΔr/2 = 
3·0.003125·30 = 0.28125 Ω; R3Δr/4 = 3·0.003125·45 = 0.421875 Ω. The currents in 
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the branch line of Fig. 8b are: I1 = 2·1.062 = 2.124; I2 = 4.248; I3 = 6.372;  
I4 = 8.496 A; the losses due to these currents are: ΔP1 = I1

2·RΔr/2 = 2.1242·0.28125 
= 1.2688; ΔP2 = 5.0753; ΔP3 = 11.4194; ΔP4 = 10.1506 W. The total losses of a 
strip with discrete load: ΔPsdl = 27.914 W, the discrepancy with ΔPs being 3%. 

If the losses should be recalculated for another current density or cross- 
section area, a new value of specific resistance RΩ/m′ is to be determined and the 
resistance factor kΩ RΩ/m′/RΩ/m calculated; the new value of losses is the product of 
this factor and the previous value of losses. For example, if jb′ = 1 A/mm2, then 
RΩ/m′ = 1/(γF′); hence F′=Imax/jb′ = 0.00118·120·60/1 = 8.496 mm2. This is a 
hypothetical value; however, in the analysis we shall adopt it in the model 
calculations. We will thus have: RΩ/m

’=1/(32·8.496)=0.0036782, and the resistance 
factor kΩ = RΩ/m′/RΩ/m = 0.0036782/0.003125 = 1.177. New loss values will be: 
ΔPs = 27.063·1.177=31.853; ΔPsdl = 27.914·1.177=32.855. 

To develop the final expression for pA losses of the network in a circular 
model, we shall write, observing (19), the formulas in the pA notation for the 
corresponding quantities as 
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Applying (57) to (9), we obtain the following expressions for the pA 
network costs: 
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The results of calculations are shown in Table 1. 
Table 1 

Comparison of parameters for differently shaped fed zones 

Fed zone Load distribution ltpA, m/A lbpA, m/A ΔPtpA, W/A ΔPbpA, W/A 

Circle Continuous 3.266 13.578 14.850 3.711 

Hexagon Discrete 3.591 12.688 11.384 4.729 

Square Discrete 3.459 11.818 10.864 4.227 

 
Losses in a circle are computed by formulas (57); those in a hexagon and a 

square are calculated in the manner shown for a strip. The greatest discrepancy is 
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for per ampere (pA) losses in trunk lines; presumably, it is due to the maximum 
current irregularities in branch lines. The branch pA losses show the same tendency 
as for the strip. The maximum current ratios are close to the area ones, with a 
considerable discrepancy for a hexagon due to the free space along its boundaries 
(Fig. 9). On the whole, the circle model (Eq. (58)) could admittedly be used to 
reveal the influence of various factors on the network efficiency for other zone 
shapes. 

To optimize the efficiency, we can vary zone radius R, while n, Δr and σ are 
conditioned by the territory planning. Other parameters are determined by the wire 
material, the type of consumers, and the economic factors. Varying radius R, we 
must abide by the main constraint: the maximum voltage loss that in a low-voltage 
network is equal to the voltage drop across the active resistance of a trunk wire 
(UΔt) and a branch wire (UΔb). 

The voltage drop across the trunk line up to the circle boundary, observing 
(16) and (19), will be: 
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and the peripheral voltage drop:  
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In turn, the maximum voltage loss on a trunk line is: 
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and that of a branch line up to the radial boundary: 

max0max2
1
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The maximum length up to the radial boundary of branch line and its cross-
section will be: 

tb Rk
n

l π
=′max ;     

b

b
b j

iF max= . (63) 

The maximum branch current and specific branch line resistance are: 
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A real branch line does not reach the radial boundary by Δr/4 (Fig. 7), hence: 
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The maximum voltage loss on a branch line is: 

tb

b

b

tb
bperbb Rk

rnj
n
RkjUUU

πγγ
π

322

2Δ
−=−′= ΔΔΔ ,  (67) 

and the maximum voltage loss in a fed zone: 
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From (68), the maximum R satisfying the admissible voltage loss UΔ is: 
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The first value of R is calculated with assumed kt, whereas more exact its 
values are calculated introducing the trunk coefficient kt obtained from (25). 

In expression (58), the variable quantities are R, jt, jb, since distance Δr is 
conditioned by the dislocation of consumers, whereas the number n of sectors − by 
the territory planning. Constants Ca, Cb, Cw are determined by the existing technical 
and economic conditions. The influence of various factors can be elucidated 
analyzing expression (58) − if not mathematically then by the case calculations, 
since the influence of some quantities is very intricate. 

According to the authors of [6], building of a 1 km 0.4 kV line with insulated 
aluminium wires costs ~10000 LVL, since K0 = 10 LVL/m. In [4] this quantity  
is given as K0 = a+bF, with a and b defined according to (5). The cross-section  
of a phase wire could be taken 50 mm2, which according to [7] costs ~2 LVL/m. 
Hence bF = 2 LVL/m, b = 2/50 = 0.04 LVL/(m·mm2) = 40000 LVL/(m·m2);  
a = K0 – bF = 10–2 = 8 LVL/m. It is supposed that i = 10–14%, pΣ ≈ 4%; the assu-
med values: i = 12%, pΣ = 4%, β′ = 0.000033 LVL/Wh, β′′ = 0.00365 LVL/W. By 
(6), Ca = 1.28 LVL/m; Cb = 0.0064 LVL/(m·mm2) = 6400 LVL/(m·m2); Cw = 
0.10265 LVL/W. The remaining quantities are: σ = 0,00118 A/m2; n = 4; Δr = 60 m; 
U = 400 V; UΔ = 0.05·U/1.732=11.5 V; jt = jb = 1·106 A/m2; γt = γb = 32·106 m/(Ω·m2); 
kt is found from (25), and kb − from (48); τ = 3000 h; Tm = 4600 h; CnwpA, Cnwpu are 
found from (58) and (10), respectively. 

The end results show that pA and pu values are slightly decreasing with zone 
radius: at R = 361 m, Cnwpu = 0.01046 LVL/kW; 250 m – 0.00971; 150 m – 
0.00885, all the three results being obtained for jt = jb = 1 A/mm2. The result is quite 
understandable: the smaller the fed zone radius the less are losses in phase wires. 
When optimized for admissible voltage loss of 11.5 V, radius Rcon is determined 
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from (69). Hence, we can change the radius by changing the current densities jt and 
jb. Here we can see an inverse dependence with respect to the current density: at 
jt = jb = 1.5 A/mm2 we will have Rcon = 246.6 m, Cnwpu = 0.01 LVL/kWh, while at 
jt = jb = 2 A/mm2 − Rco n= 190 m and Cnwpu = 0.00889 LVL/kWh. 

The inference is: a low-voltage network should be optimized together with 
its transformer unit. 

The transformer unit cost Ktu consists of the cubicle cost Kcu and the trans-
former cost Ktr. According to [6], Ktu ≈ 20000 LVL for a unit with one transformer.  

Currently, three medium/low voltage transformers are available at the 
Latvian Branch of International Electro-Technical Concern ABB: 

 
 Str, 

kVa 
Price,  

LVL+VAT 
Load loss 
ΔPld , W 

No-load loss 
ΔPnl, W 

1) 25 1765   790 160 
2) 40 1931 1300 160 
3) 63 2145 1800 240 

 
Hence, the transformer cost (VAT included) can be modelled as 

trtr SK 0117.01840 += . (70) 

If the assumed power of a transformer in the transformer unit is 40 kVA 
(1931+VAT≈2310 LVL), the cost of a cubicle itself is: 20000-2310=17690 LVL. 
The transformer unit cost, irrespective of the transformer capacity sharing, is: 
17690+1840=19530 LVL. Therefore, this cost (VAT included) can be modelled as 
 .              (71) trtu SK 0117.019530 +=

The load losses and no-load losses of a transformer can be determined as 
functions of its capacity [8]: 

4/3
trldld SP κ=Δ  ;     (72) .4/3

trnlnl SP κ=Δ

For the transformers under consideration the factors κld and κnl are: 

4 3
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4 3
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=κ . (73) 

To evaluate these factors, a 63 kVA transformer was taken:  

4525.063000/1800 4 3 ==ldκ  W/(VA)3/4;  

0603.063000/240 4 3 ==nlκ . (74) 

Now, observing (71)–(74), we can rewrite (11) as 

++++= ΣΣ trtu SpipiC )(000117.03.195)(  
4/34/3 0603.04525.0 trwnltrw SCSC ++ . (75) 
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Assuming the transformer capacity to correspond to the maximum load 
current ( max3UIStr = ) we can write: 
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Using (58) and (76), we can search for the minimum costs CΣ by (13), 
varying radius R and current density j, with due regard for limitations by (69). It 
would be simpler to reach the target by a case study, i.e. substituting in (13) proper 
values of current density j and radius R. Studying (13) shows that per unit costs CΣ 
strongly depend on the load density σ (grow with σ decreasing). More detailed 
dependences can be seen from Table 2, where Rcon, Ropt, Rado are, respectively: the 
radius in view of (69), the optimized (by the least costs) radius, and that adopted 
observing (69); the current densities being jt = jb = j. 

Table 2 
The case study results  

σ, 
MVA/km2 

Δr, 
m 

j, 
A/mm2 

Rcon 
, 

m 
Ropt 

, 

m 
Rado 

, 

m 
Str

 , 

MVA 
CΣpu 

, 

LVL/kWh 

15 60 1.2 303 190 190 1.7   0.00275 
5 60 1.2 304 270 270 1.145   0.00433 
1 60 0.8 448 455 448 0.63   0.011 
0.1 60 0.5 707 900 707 0.157   0.069 
0.1 200 0.6 633 950 633 0.126   0.0305 

 

7. CONCLUSIONS 

1. Although other than hexagonal fed zone shapes can be met in practice, for the 
analysis more convenient is a circular fed zone. 

2. The line lengths, load losses, and the maximum current of a hexagonal or a 
squared fed zone can be calculated as approximately proportional to those of a 
circular fed zone. 

3. The radius of a fed zone, the capacity of a medium/low voltage transformer 
and, to a lesser degree, the current density in line conductors depend on several 
factors − first of all on the load density. They should be adapted to local 
conditions by the least annual costs criterion. 

4. The analysis has revealed the interdependence of the main parameters of a low-
voltage network. 
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VIDSPRIEGUMA/ZEMSPRIEGUMA TRANSFORMATORU 

JAUDAS NOTEIKŠANA 
J. Survilo 

K o p s a v i l k u m s  
Zemsprieguma tīklam kopā ar vidsprieguma/zemsprieguma transformatoru 

jāatbilst efektivitātes prasībām, piegādājot nepieciešamās kvalitātes elektroenerģiju 
patērētājiem. Izmaksās galvenokārt ietilpst ikgadējās maksas par transformatoru, 
zemsprieguma tīklu un par zudumiem tīklā un transformatorā. Šīs izmaksas un citi 
parametri ir atkarīgi no vairākiem faktoriem. Galvenais no tiem ir slodzes blīvums. 
Sešstūra apgādājamā zona pārklāj blīvi visu lielāku teritoriju un tai ir labākie citi 
rādītāji, salīdzinot ar taisnstūri un trīsstūri. Izskatīšana tika veikta uz ērtā šim 
nolūkam kanoniskā modeļa, kas ir apaļa apgādājamā zona ar nepārtrauktu slodzes 
blīvumu. Uz šo modeli var paļauties, kad izskata sešstūra vai kvadrātisku zonu ar 
diskrēto slodzi. Rezultātus, kas iegūti uz apļa zonas modeļa, var pārnest uz kvad-
rāta vai sešstūra zonu ar relatīvo koeficientu palīdzību. Transformatora jauda ir 
noteikta ar apgādājamās zonas rādiusa vērtību. Rādiusam ir nepārvarams ierobe-
žojums – sprieguma novirze pie visattālākā patērētāja nedrīkst pārsniegt pieļau-
jamo vērtību. Šajos apstākļos nav daudz iespēju, lai optimizētu tīkla efektivitāti. 
Optimizāciju pie uzdotā slodzes blīvuma var panākt, mainot apgādājamās zonas 
rādiusu un strāvas blīvumu fāžu vados. 
10.06.2010. 

http://www.rsoftdesign.com/
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