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A numerical method for simulation of electron and hole diffusion in silicon in 

the temperature gradient created by the shock load is developed. To analyze the 
transfer process, a complete system of electro-thermo-diffusion equations for charge 
carriers was solved based on the Poisson equation. The numerical solution was 
obtained using the difference methods developed for semiconductor devices. The 
comparison of the experimental results with the numerical calculation shows a good 
correlation, which means that the thermo-diffusion of charge carriers in the shock 
wave front is the main factor responsible for polarization in the shocked silicon.  

1. INTRODUCTION 

Studies of electromotive forces (EMFs) induced by shock waves – the 
shock-induced polarization as a more widespread term – in condensed matter have 
quite a long history owing to a fundamental interest in the behaviour of materials 
under extreme conditions and the technological applications. It was first discovered 
that deformation of ionic crystals results in the appearance of electric potential 
between the deformed surfaces [1]. Later, the so-called impact EMF was observed 
in linear and nonlinear dielectrics [2, 3], semiconductors [4], and metals [5] under 
the shock load. 

Physics of shock or impact EMF is complex and multifaceted. It has mostly 
been developed for dielectrics (see an excellent review by Mineev and Inanov [6]). 
Phenomenological models often used in earlier works (see, e.g. [7–9]) assume 
polarization of dielectric in the front of a plane shock wave. Advantages and 
disadvantages of this approach are discussed in great detail in review [6]. The 
explanation of shock-induced EMF is not that simple for semiconductors. Attempts 
to describe EMF with polarization mechanisms alone have failed. Many authors 
conclude that, along with polarization, there are other mechanisms – such as 
formation and migration of Frenkel’s pair type point defects [4]. The situation is 
even more complex for metals, because the polarization models used for dielectrics 
do not work here at all. Therefore, other dynamic models were suggested, e.g., the 
diffusion of charge carriers from the wave front [10] and the increasing number of 
carriers at lattice deformations [11].  

The present paper presents an attempt to estimate straightforward (nume-
rically) the electric current created by a shock wave in the electrically-neutral sili-
con. It is supposed that the charge carriers and the ionized impurity can be sepa-
rated owing to a temperature gradient of the shock wave front under some shock 
heating condition, thus creating a double electric layer. At the presence of some 
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conductivity this double layer can generate a nonzero electric current in an origi-
nally neutral sample of the semiconductor. It has been shown that the shock heating 
is sufficient for explanation of the experimental values of current in shocked silicon 
reported in [4]. Moreover, modelling of the conductivity change in the compression 
region has allowed also explanation of the time dependence of these currents [4] 
during propagation of the shock wave front through the sample. 

We have developed a method for calculation of the drift-thermo-diffusion of 
electrons and holes, which makes it possible to obtain the magnitudes of voltages, 
electric field and currents in shocked semiconductors. In this study, general me-
thods worked out for semiconductor devices [12, 13] were applied for simulation 
of the electric current induced by a temperature gradient in the shock wave front. 
Since many efficient numerical schemes are well known in this field, some success 
could have been expected. It turned out, however, that the problem of calculating 
the shock-induced currents is very complicated, and its solution is possible if the 
discrepancy of the electric potential in the modelled structure is small enough. The 
mentioned methods work quickly only in the regions of small concentrations of 
charge carriers, but when the concentration increases the number of iterations for 
obtaining the necessary precision also grows. Therefore, it is necessary to use high-
speed computation tools (like the GRID-technology [14]) if these methods are to be 
applied to highly-doped semiconductors and metals. In the meantime, the most 
interesting problem is the determination of currents in metallic samples, since there 
is no clear picture in the interpretation of the large EMF in shocked metals. 

2. SIMULATION OF SHOCK WAVES IN SILICON 

All the necessary parameters of a shock wave can generally be derived for 
solids from the conservation laws in the same manner as for gases and liquids [15]. 
The difference is in the equation of state and in the equations of impulse and 
energy, where a stress component (or the material strength), σs, appears. This com-
ponent describes solids, and its form depends on a specific model of the chosen 
solid. In particular, the elastic-plastic model is often used to simulate shock/impact 
waves [16, 17]. In this study, we will restrict ourselves to the elastic model. The 
complete elastic-plastic rheologic model for a specific material at high pressure is 
the subject of special discussion and is not treated here. 

For the impact wave front the conservation laws of mass, impulse, and ener-
gy are valid. We will write these equations for the one-dimensional problem in 
Euler’s coordinates [18]: 
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where  ρ is the density;  
v is the velocity;  
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e is the internal energy;  
σ is Cauchy’s stress;  
x is the spatial coordinate;  
t is the time.  

To Eqs. (1–3) the well-known relation between the strain rate,ε& , and the 
velocity, v, for solid states [15] should be added: 
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The Cauchy stress is 

pvs −+= σσσ , (5) 

where p is the hydrostatic pressure. The material strength σs and the viscous stress 
σv can be presented in the following form [19]: 

εσ &Gs 2= ; (6) 

ενσ &2=v . (7) 

where G is the shear modulus and ν  is the shear viscosity. 
The equation of state (EOS) for the pressure as a function of the density and 

internal energy has been determined for the crystal as [20] 
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where  ρ0 is the initial density;  
C  is the longitudinal speed of sound under ambient conditions;  
γ0  is Gruneisen’s coefficient; 
S  is some EOS parameter.  

If the equation of state (8) is substituted into the conservation law equations 
(1–3), the following equations for the stationary shock wave could be obtained 
[21]: 
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where D is the shock wave velocity,  
p1, v1, μ1 are the pressure, velocity and compression degree behind the 

shock front.  
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From Eq. (10) (or Hugoniot’s equation) it is possible to define the maximum 
compression μ1 in the shock wave if its amplitude p1 is known. After that, from 
Eqs. (11, 12) the mass and shock wave velocities could be found. The additional 
equation (13) shows the relation between the found parameters. 

It is very simple to define the parameters for a plastic wave. If G = 0, from 
Eqs. (10–12) we will have: 
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Also, for the plastic wave it is easy to obtain the important relation D(v1), 

which usually is defined experimentally. Using any of Eqs. (14–16) and Eq. (13) 
we obtain: 
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where Cvv 11
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Equation (17) somewhat differs from the well-known form: , 
where D0 is a constant. The mentioned equation transforms into this form at large 
values of v1 when D0 asymptotically tends to zero. However, as is shown below, 
Eq. (17) describes the plastic wave much better (at least for silicon). 

10 SvDD +=

To obtain the dependences of wave parameters on the pressure for an elastic 
wave is not so trivial problem as for a plastic wave. An appropriate cubic equation 
should be solved not only for D(v1) but also for μ1(p1) if G ≠ 0. However, the 
problem can be simplified at least for μ1(p1), since for an elastic wave μ1<< 1, so in 
this case the following quadratic equation can be solved:  
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where 2
0

~ CGG ρ= .  
Equation (18) transforms into Eq. (14) if G = 0. This is an advantage of the 

quadratic approach. It is impossible to obtain this transform if a linear approach is 
used for solving Eq. (10). A cubic equation can also be obtained from Eqs. (10–
13): for D(v1) the dependence for the elastic wave is 
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which cannot be simplified because the condition 1~
>= CDD  is always valid. 

It is the easiest to express the solution of Eq. (19) in the trigonometric form: 
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3. THE MODEL OF ELECTRON-HOLE TRANSFER  
IN SHOCKED SILICON 

The shock-induced polarization of silicon, which presumably appears as a 
result of diffusive separation of electron-donor or hole-acceptor systems in the 
impurity-doped silicon under shock load, may be considered in much the same way 
as the process of ion separation in multicomponent plasmas [22]. The main reasons 
for the separation, in accordance with Zeldovich, are the differences in the 
diffusion coefficients in the shock front whose parameters – such as density, pres-
sure and temperature – strongly vary. All of these parameters can make a certain 
contribution to the separation process. In the present model, the temperature 
gradient is considered as the main factor of the separation. 

The method for calculation of the shock-induced polarization in silicon pro-
posed here is based on the well-established numerical methods developed earlier 
for the electric characteristics of semiconductor devices [12, 13]. We will consider 
the basic equations for the electro-diffusive motion of charge carriers in shocked 
silicon taking into account the thermo-diffusion effects. Using the procedures deve-
loped by the authors of [23, 24], the complete system of drift-diffusion equations 
with the thermo-diffusion component can be written as 
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where  zi  is the charge number of a charge currier of species i (electrons or 
holes as donors or acceptors);  

q  is the electronic charge;  
Di  is the diffusion coefficient;  
Ci  is the concentration of charge curriers;  
ϕ  is the electrostatic potential;  
ε, ε0 are the dielectric constants;  
kB  is Boltzman’s constant;  
αTi  is the thermo-diffusion coefficient;  
T  is the temperature, which, along with the diffusion coefficient of elec-

trons or holes (Di) is defined from the shock wave parameters: 
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here μ =1–ρ0/ρ and μ1=1–ρ0/ρ1 describe the existent and the maximum degree of 
compression in the shock wave; ρ0, ρ, ρ1 are the initial, current and maximum 
material densities; D, v are the shock wave and the particle velocity, respectively; 
T0 is the initial temperature. The input parameters Di1 and Di0 are entered into the 
model (see Eq. 25) as the diffusion coefficients in the compressed and uncompress-
ed regions, respectively. The parameter Di0 is defined from the initial conductivity 
of the sample, whereas Di1 is varied for the best conformity with the experimental 
data. The degree of shock compression μ is presented in the running-wave form 
[21]: 
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where  v1 is the maximum particle velocity;  
H  is the shock front width;  
γ0  is Grüneisen’s coefficient;  
η  is the viscosity;  
W  is a function depending on the material parameters and the shock wave 

velocity [21] as  
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The non-stationary problem described by Eqs. (21–28) was solved nume-
rically using in each time step the iteration procedure [23, 24], after which the total 
current density in the structure was calculated: 
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where  jc, jb  are the conduction and bias currents,   
E = –∇ϕ  is the electric field.   

Using the obtained value of the total current density j, the voltage drop U 
across the measuring resistor R can be estimated:   

jSRU = , (30) 

where S is the sample’s cross-section.  
The U determination is the main objective of our calculations. It is this para-

meter that is called polarization or the EMF potential and is measured in the shock 
experiments. 

Now, we will define some parameters needed for the calculations. Com-
parison of our Eq. (21) with Eqs. (1.2), (1.6) and (28’) from [25] (Chap. 12) in the 
approximation of constant concentration ∇Ci = 0 gives the thermo-diffusion coef-
ficient as 

2
5

++−= r
TkB

T
ξα , (31) 

where ξ is the chemical potential of the electron or hole;  
r is the parameter defined from a scattering mechanism r = 3/2 for the 

ionized impurity scattering.  
The mobilities of charge carriers are determined by the empirical formulae 

[13]: 
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where μn, μp are the electron and hole mobilities;  
n, p  are the concentrations of electrons and holes, respectively.  

By these formulae, using the Einstein relationship Di = kBT/q⋅μi, the diffusion 
coefficients of electrons and holes were defined. The same formulae were em-
ployed for determination of the doping impurity concentration in experimental 
silicon samples with known conductivities based on the relationships σn = qnμn or 
σp = qpμp.  

4. COMPARISON WITH THE EXPERIMENTAL DATA 

The authors of work [4] report the experimental data on the shock-induced 
polarization in silicon for two different amplitudes of the shock wave: 4 and 20 GPa. 
At 4 GPa there is only elastic wave, when the shock heating is not very strong 
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(a few degrees only) and practically does not change the initial concentration of 
charge carriers. Meanwhile, at 20 GPa, apart from the elastic wave, a plastic wave 
could occur, with an intense shock heating (several hundreds of degrees), resulting 
in strong ionization of the semiconductor with additional electrons and holes 
arising in the conductivity and valence zones, respectively. In the former case, the 
dominant mechanism of the shock-induced polarization is the separation of charge 
carriers and ionized impurity, whereas in the latter – the electron-hole separation 
owing to the difference both in the mobilities and in the thermo-diffusion coef-
ficients. In the present work, the former case – as a simpler one – is considered. 
The case of the electron-hole separation will be treated in the work that follows. 

The elastic wave parameters for silicon could be obtained using the data of 
work [26]. From Fig. 2 of that work it is seen that the elastic wave in the (111) 
direction is approximated by the straight line: 

196.036.9 vD +=  (34) 

in the mass velocity range from 0 to 0.3 km/s. Using Eqs. (12), (13) and (20) the 
shock wave parameters could be chosen. Thus, from Eq. (13) the shear modulus G 
is determinable assuming that the end point of curve Eq. (34) at v1 = 0.3 km/s 
corresponds to the pressure of 4 GPa. Parameter С could be found from Eq. (12) at 
p1 = 0 and v1 = 0 – the beginning point of curve Eq. (34) – under the supposition 
that at the zero pressure the shock wave velocity is equal to the sound speed. The 
remaining parameters, γ0 and S, can be adjusted by matching Eq. (20) and the 
experimental curve (Eq. (34)). The results of estimation of the elastic shock wave 
parameters, along with some reference data, are presented in Table 1. 
 

Table1 
Material parameters used in the calculations 

Parameters Si Units 

Density, ρ0 2.329 gm cm–3 

Specific heat, Cp 0.879 J gm–1 K–1 
Shear modulus, G  41 Gpa 
Shear viscosity, ν 300 Poise 

γ0 0.85  
S 2.74  
C 7.236 km c–1 

 
First, we will consider the behaviour of low-doped samples of silicon under 

the shock load. This variant is simpler for modelling, since in this case the number 
of iterations made at each time step to obtain identical current values at any point 
of the sample is not too large. Besides, it would be instructive to know the value of 
current for low-doped samples at 4 GPa, since the experimental data in work [4] 
relate to 20 GPa only (see sample № 5 in Fig. 2 [4]). 

Figure 1 displays the results of a testing calculation of shocked low-doped 
(3.6⋅1011 cm–3) p-silicon at a shock wave amplitude of 4 GPa. The polarization sig-
nal is depicted as a voltage drop across a 100 ohm resistor with the current obtain-
ed numerically from Eqs. (21–23) and Eqs. (29, 30). The silicon sample contact 
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area was assumed to be 1 cm2. These values of the resistance and the contact area 
(corresponds to the sample cross-section in our model) were employed in work [4]. 
In Fig. 1a the change in potential on the measuring resistor (a solid line) is shown 
for the time of shock wave propagation in the 4 GPa case, with the silicon 
parameters being as given in [4] for sample № 5. From the figure it is seen that at 
the beginning the potential rises sharply up to some value and, after a definite time, 
it rapidly falls to zero. The corresponding sections are associated with the shock wa-
ve front entering the sample and exiting from it. Between these sections the shock 

 
Time t (μS) 

 
Time t (μS) 

 
Time t (μS) 

Fig 1. The total polarization current I a) and its components (conduction current Ic and bias current Ib) 
at the left b) and the right c) sample contacts of the low-doped (3.6⋅1011 cm–3) p-silicon shocked  

at 4 GPa. All currents are shown as the potential drop on the resistor R = 100 ohm. 

I = Ic + Ib 

Ib

Ic 

Ic 

Ib
I = Ic + Ib 
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wave front is travelling through the sample, with the potential being almost 
constant. In Fig. 1b,c one can see the values of the total current and its compo-
nents – the conduction current and the bias current on the left and right sample 
ends (contacts), respectively. The total current varies monotonically and practically 
in the same manner at both the ends, which proves the numerical calculations to be 
correct. The current components, in turn, change steeply and not equally on both 
the boundaries, especially when the shock wave front enters the sample or exits from 
it. Their sum, however, shows a monotonic behaviour, which evidences once again 
that the numerical calculations are true. 

The conditions of the structural total current consistency can be derived only 
by performing the necessary iterations at each time step, which should be small 
enough.  In the variant described above the time step was ~ 10–10 s, with the num-
ber of iterations at each step being ~ 5⋅103. This presents the necessary condition 
for correct calculation of the problem. Figure 1а shows (dashed lines) the total 
currents on the sample’s boundaries that were obtained at a smaller number of 
iterations; this demonstrates the growth in error at calculations of the total current 
at the number of iterations decreasing. 

The number of iterations should be raised if the doping level in silicon 
increases. When this level is ~3.6⋅1011, for calculation of a silicon structure several 
thousands of iterations are needed – a task that can be solved with modern PCs; at a 
doping level of 1⋅1015-1⋅1018 the number of iterations rises tens and even hundreds 
of times. Therefore, more productive hardware is needed – such as GRID techno-
logies, which have been employed for calculations of highly-doped structures in 
this work. 

Despite quite a large value of the thermal diffusivity (αT = 22 for 
3.6⋅1011 cm–3 from Eq. (31); this coefficient in semiconductors is the larger the 
lower the doping level) the structure with a doping level of ~ 3.6⋅1011 cm–3 exhibits 
very low values of the potential – several mV at the maximum (see Fig. 1а). This is 
three orders of magnitude lower than the potential values on the experimental 
polarization curves of work [4], where these values are in the range from 0.15 to 
1.5 V; this means that to obtain such potential magnitudes one should raise either 
the level of silicon doping or the amplitude of the shock wave. Indeed, in work [4] 
the potentials of 0.15 V were obtained for n- and p-semiconductors with the doping 
level of ~ 1⋅1015 at 4 GPa, whereas at 20 GPa the potentials of 1.5 V were obtained 
both for a low-doped (5⋅1011) sample and for highly-doped ones (~1⋅1015). Besides, 
the value and sign of the potential at 20 GPa do not depend on the doping level, 
which could be explained by a strong ionization of the semiconductor itself as a 
result of the shock heating. The potential at 4 GPa changes its sign for n- and p- 
types of semiconductor. This means that the charge carriers–ionized impurity 
separation model is valid at low pressures, which will be shown further by more 
specified calculations. 

At the beginning we will consider the influence of conductivity increase or 
decrease behind the shock wave front upon the shape of the polarization signal. As 
is noted in Sect. 3, the conductivity changes have been modelled by variation in the 
diffusion coefficient of mobile charge carriers in the compression zone. In this 
connection it should be noted that the conductivity can also change as a result of 
the changed concentration of these carriers. However, to model the concentration 
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changes is a much more complicated task than to do this with their kinematical 
changes. Besides, in reasonable limits the modelling by both methods should give 
identical results, which will be employed further at the interpretation of the data 
obtained. 

 

 
Time t (μs) 

Fig. 2. Current-time characteristic of the low-doped (3.6⋅1011 cm–3) p-silicon shocked at 4 GPa at 
different diffusion coefficients of holes (K = D1/D0) behind the shock wave front. As in Fig. 1, all 

currents are shown as the potential drop on the resistor R = 100 ohm.  

Figure 2 by dashed lines shows the results of modelling the polarization 
currents in silicon at a double increase/decrease in the mobility of charge carriers 
behind the shock wave front. For comparison, by a solid line the results of 
modelling at constant mobility values are shown. In the figure it is seen that in the 
stationary section of the current-time characteristic (i.e. the shock wave front is 
travelling inside the sample) the current increases or decreases monotonically – 
depending on the increase or decrease in the mobility of charge carriers behind the 
front. Most probably, the currents will change in a similar manner at the charge 
carrier concentration changing in the same proportions. This – quite evident – 
supposition helps to interpret more completely the experimental results of work [4]. 
Thus, for example, from the mentioned work it follows that the polarization current   
increases monotonically at 20 GPa, which can be explained by an increase in the 
concentration of charge carriers under strong shock heating. Now, we will turn 
back to the polarization currents obtained at 4 Gpa. 

Figure 3 shows the polarization currents obtained for p- and n-type silicon at 
4 GPa (samples № 2 and № 6 in Ref. [4]) with the doping levels of 3.05⋅1015 and 
1.08 ⋅1015 cm–3, respectively. The calculations for such a high doping level were 
performed using Baltic-GRIG, taking about 48 hours for each variant (6⋅103 time 
steps with 3⋅105 iterations in each step). The results of modelling are presented in 
the figure by solid lines, and the experimental data are shown by solid circles. The 
shock wave velocity at 4 GPa was taken 9.71 km/s (theoretical results), with an 
insignificant correction: 8.45 km/s for sample № 2 and 8.74 km/s for sample № 6, 
respectively. The shock wave front width was assumed to be equal to 0.4 mm for 
both the samples. The theoretically calculated shock heating was 45 degrees for 
4 GPa, which, as was expected, practically did not change the carriers’ concen-
tration in the semiconductor. The resultant curves were obtained by fitting two 
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basic model parameters: the thermo-diffusion coefficient αT and the ratio of dif-
fusivities of charge carriers in compressed and non-compressed regions K = D1/D0. 
The best fitting with the experimental data has been obtained at αT = 0.50, K = 0.15 
for sample № 2, and αT = 0.79, K = 0.80 for sample № 6. The values of thermo-
diffusivities turned out to be somewhat below the theoretical estimates of these 
values for semiconductors (~12 from Eq. (31) for 1015 cm–3), which could be 
attributed to the dynamical character of the process. The decrease in K is suppos-
edly connected not with the decrease in the mobility of charge carriers in the 
compressed region but rather with their lower concentration owing to deionization 
of the doping impurity in semiconductor under pressure. As this takes place, the de-
ionization in p-type silicon is much more intense than in n-type silicon (see Fig. 3). 

 

 
Time t (μs) 

 
Time t (μs) 

Fig 3. The potential drop on the resistor R = 100 ohm for  
a) medium-doped (3.05⋅1015 cm–3) p-silicon (sample № 2 in Ref. [4]) and  

b) medium-doped (1.08⋅1015 cm–3) n-silicon (sample № 6 in Ref. [4]) shocked at 4 GPa.  
The thermo-diffusion coefficient and the ratio of mobilities are obtained  

at αT = 0.50, K = 0.15 for sample № 2, and αT = 0.79, K = 0.80 for sample № 6. 

The values of ionization degree and thermo-diffusivities can be refined in 
more perfect models. However, the very fact that the values of experimental polari-
zation currents are obtained at lower thermo-diffusivities than this follows from the 
semiconductor theory counts in favour of the hypothesis about the thermo-diffusion 
as the dominant factor in arising of polarization currents in shocked semiconduc-
tors. 
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5. CONCLUSION 

The straightforward method of modelling has been offered for the descrip-
tion of polarizing currents in shocked silicon at 4 GPa. The thermo-diffusion of the 
charge carriers in the temperature gradient of the shock wave front is calculated by 
the numerical method developed earlier for the electric characteristics of semi-
conductor devices. The comparison with the experimental data shows that the 
thermo-diffusion coefficient in semiconductors is large enough to explain the 
appearance of polarization current in the shocked silicon. Moreover, the impurity 
deionization behind the shock wave front follows from the analysis of the 
experimental polarization currents at 4 Gpa. These results show a good opportunity 
to derive the information on the physical phenomena in shocked materials from 
polarization currents. 
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LĀDIŅU PĀRNESES TRIECIENAM PAKĻAUTĀ SILICIJĀ  
SKAITLISKA MODELĒŠANA ZEMA SPIEDIENA GADĪJUMĀ 

B. Martuzāns, J.. Skrils  

K o p s a v i l k u m s 

Izstrādāta skaitliska metode, lai modelētu elektronu un caurumu difūziju 
silicijā, kura notiek trieciena slodzes radītā temperatūras gradientā. Lai analizētu šo 
pārneses procesu, pilna lādiņu nesēju elektro-termodifūzijas vienādojumu sistēma 
tika risināta kopā ar Puasona vienādojumu. Skaitliskais risinājums tika iegūts ar 
diferenču metodes palīdzību, kura tika izstrādāta pusvadītāju iekārtām. Eksperi-
mentālo rezultātu un skaitliskā risinājuma salīdzināšana uzrāda labu korelāciju, kas 
nozīmē, ka lādiņa nesēju termodifūzija trieciena viļņa frontē ir galvenais faktors, 
kurš atbild par polarizāciju triecienam pakļautā silicijā. 
11.08.2008 
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