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The apparent impedance to single-phase earth fault place is obtained applying 

the classical algorithm of distance protection. Thanks to a complex character of this 
impedance, the expression for the algorithm decomposes into two equations, allowing 
two unknowns to be calculated: the reactance to a fault place and the fault resistance, 
provided the faulty phase voltage and current as well as ground current or zero 
sequence current are known. To do this, a special mathematical procedure called here 
the apparent impedance method is employed, which implies the use of specific line 
parameters. For high voltage two-terminal and radial lines of distribution networks the 
iterative procedure could be applied under the condition that the faulty phase voltage 
is measured in a distribution network with sufficient precision. Among other specific 
line parameters, the inconsistency of specific resistance of the phase conductor 
deserves special attention because of its unpredictable nature and wide range of 
deviations causing inadmissible errors in distribution networks. To cope with this 
shortcoming, the temperature of the phase conductor wire should be known at the 
moment of fault inception. Otherwise, the single-phase earth fault current should be 
increased to the level above the half the line load current. 

Key words: distance protection, fault resistance, high voltage network, 
medium voltage grid, single-phase earth fault. 

1. INTRODUCTION 

Protection of two-terminal power lines in the case of single-phase earth fault 
using one-terminal fault data has been given much attention for a long time. For 
this purpose, various methods based on digital technique have been proposed [1–
3]. Special methods, such as frequency allocation and analysis of initial voltages, 
requiring however additional technical means, are applied to locate such a fault [4]. 
Even a neural artificial network can be used to achieve advantageous results [5, 6].  

In 2004, an attempt was made [7] to apply the classical algorithm of distant 
protection for determination of the direct sequence reactance X1 to a single-phase 
earth fault place: 
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where Ża is the apparent impedance to fault place;  is a compensation coef-
ficient;  is the faulty phase voltage; İph is the faulty phase current; İg is the 
ground current.  
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Afterwards this way of handling apparent impedance Ża (called here “ap-
parent impedance method”) was accomplished for single lines [8]. Later on, the 
method was adapted for double circuit (parallel) lines [9]. The authors of [10] ap-
plied the method for distribution networks with small single-phase earth currents. 
Similar methods found use in the case of two-terminal lines for other types of short 
circuits [11]. The purpose of this paper is to consider the possibility to apply the 
apparent impedance method for high- and medium-voltage networks in the cases 
when the active resistance of the phase conductor of a power line is difficult to 
predict. Besides, the theory of the mentioned method is expounded here more 
coherently than it was made in [7–10]. 

Applying the apparent impedance method, the configuration of power line is 
implied to be symmetrical or effectively transposed. This condition must be met to 
avoid significant errors. 

2. THE THEORY AND THE METHOD 

To determine the apparent impedance Ża in accordance with (1), it is 
necessary to measure faulty phase voltage , faulty phase current İph, and 
ground current İg at the place of installation of a protection device (at the 
monitoring point). Besides, to take into account the dissimilarity of positive and 
zero sequence impedances of a power line, a compensation coefficient  should 
be calculated: 
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where Ż0; Ż1 are the zero sequence and positive sequence impedances to the fault 
place; respectively, Ż0sp; Ż1sp are corresponding specific quantities which are sup-
posed to be known for a power line under consideration. 

In this section it will be shown how the required positive sequence reactance 
X1 to the fault place can be determined using the calculated by Eq. (1) apparent 
impedance quantity Ża. 

The modern microprocessor technique makes it possible to find apparent 
impedance Ża and its real Ra and imaginary Xa components with the necessary 
precision: 
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To clarify the matter, let us consider the circuit diagram in Fig. 1. For the 
sake of generalization, the neutral is closed through the earthing impedance. 
Positive, negative and zero sequence impedances Ż1, Ż2, and Ż0 to a fault place and 
corresponding specific quantities are the following: 
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where Rc is the active resistance of phase conductor; R0 is the zero sequence active 
resistance of phase conductor; Rg is the ground resistance; X1, X0 are the direct and 
zero sequence reactances; l is the distance from the monitoring point to the fault 
place;  Rcsp, R0sp, Rgsp, X1sp, X0sp.are the specific parameters. 

 

 

 
Fig.1. Circuit diagram of the line faulty phase 

A – protection device; U  – phase voltages at the point of its installation; Rf – fault resistance 
(between the faulty phase wire and the earth); F(1) – single-phase earth fault; S – electric system at the 
far end of the line; llin and l – power line length and distance to the fault place, km; Ż – corresponding 
impedances. 

&

 
The quantities Rc, R0, Rg, X1, X0 in (4) are expressed by the products: 

lRR cspc = ;   ;   lRR sp00 = lRR gspg = ;   lXX sp11 = ;   lXX sp00 = . (5) 

Faulty phase current İph, according to Fortescue’s method [12], consists of 
positive İ1l, negative İ2l and zero İ0l sequence currents: 

lllph IIII 021
&&&& ++= ,  (6) 

with the following dependence valid: 

lg II 03 && = .                                                                 (7) 

We can measure ground current İg or calculate current I0l using known 
Fortescue’s formulas by three phase currents (İA; İB; İC) measured by phase current 
transformers. Therefore we can determine current quotient k  and its real k′ and 
imaginary k′′ parts: 
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The expression for faulty phase voltage U  can be written as ph
&
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Fault current İf may be or may not be equal to ground current İg. Further, this 
question will be concretized. The relation between phase current İph and fault 
current İf is determined by quotient  and its real fk& fk ′  and imaginary  compo-
nents: 
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Now, let us define the so-called putative ground resistance Rgp for power 
lines where zero sequence active resistance R0 of the phase conductor differs from 
its the positive and negative sequence active resistance Rc:  
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When Rc and R0 of a power line do not differ, the following is true: 

ggp RR = ;     .         (13) gspgpsp RR =

Using (12) and observing (4); (9) and (11), we can rewrite expression (10) 
for phase voltage : phU&
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The resistances and reactances are shown in Fig. 1. In the simplest case, when: 
1) the total phase current İph flows through a fault place and along the ground path 
(İph=İg, hence  and ), and 2) there is no fault resistance (Rf = 0) – the 

real and imaginary parts of expression (14) become simpler and could be desig-
nated Rs and Xs: 
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( ; Rk ′ Xk ′  are the real parts and Rk ′′ ; Xk ′′  – the imaginary ones) we can rewrite 
expression (14) as 
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Now expression (1), taking into account (2) and (17), will be written as: 
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where complex coefficients ;  (and their real dRk& dXk& drk ′  and imaginary  parts) 
are: 
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When faulty phase voltage  can be expressed by (14), it is obvious that phU&

XdX kk && =  .                                                              (20) 

The protection device, having at its input phase current İph, phase voltage 
 and ground current İg (which can be replaced by current İ0l), computes by 

expression (1) apparent impedance Ża and its real Ra and imaginary Xa components 
in accordance with (3), provided compensation coefficient  is found by Eq. (2) 
out of Ż1 and Ż0. 
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From (18), having obtained Ra and Xa by (3), we can determine the sought-
for values of  X1 (which is equivalent to the distance to a fault place) and fault 
resistance Rf ≥ 0  as follows. 

At the beginning, the real part of expression (18) must be rewritten in a 
concise pattern as 

WXVRR ca 1−= ,                                                        (21) 

from where V and W  could be presented as 
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The quantities Rc and X1 are so far unknown. To expand (21) it is necessary 
to use (22) and the following designations: 
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where the quantities in the numerator and denominator are defined by (4), (5), (12), 
(13) and (15). 

Applying designations (22), (23) to expression (21), we obtain a formula for 
Ra with 16 terms in the numerator (represented by “....”) and with 6 terms in the 
denominator: 
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Having denoted once more: 
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and using (23), coefficients Rk ′ ; Rk ′′  (see (16)), can be expressed as:  
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To make expression (24) more readable, we will introduce additionally the 
following designations: 
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Now apparent resistance Ra can be written as: 

f
ffXX

a R
h

kff
X

h
fkfkcfdfdR

′′′+′
+

′′′−′′′+′′′′+′′
=

)tg()(
1

ϕ
.                    (28) 

Apparent reactance Xa can be found in the same manner: 
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From (28) and (29) four coefficients can be separated out: 

h
fkfkcfdfdA XX )( ′′′−′′′+′′′′+′′

= ;     
h

kff
B ff ′′′+′
=

)tg( ϕ
;  (30) 

h
fdfdfkfkcC XX ′′′−′′′+′′′′+′′

=
)( ;     

h
kff

D ff ′′′−′
=

)tg( ϕ
.             

In virtue of (20), coefficients A and C become: 

aA = ;     ,                                                    (31) 1=C

which can be proven applying to (30) expression (20) and using the equalities: 
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(for coefficients a and b see (23)). 
Equalities (31) are very useful for verification of calculation programs; 

besides, they allow the final formulas for the sought values X1 and Rf to be obtained 
more simply. Namely, from (28)–(31) we find:                           
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After that, the distance l to the fault place can be easily determined: 
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From (33) it follows distinctly that the positive sequence reactance to fault 
place X1 depends on the apparent resistance Ra and apparent reactance Xa, which 
are computed by the protection device provided that the fault angle φf is known. 
This angle can be calculated if current İgr (see Fig. 1) is known. For one-terminal 
line (the line fed from one side) with dead-earthed neutral the current İgr can be 
considered zero, which significantly simplifies calculation by (33). In this case 

1== fkk && ;     ,     1== dXdR kk && 0tg =fϕ                                     (35) 
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and, consequently, 
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In a still more particular case, when there is a metallic fault (Rf = 0), we will 
have: 

caa RaXR == ;     1XX a = ,                                              (37) 

which corresponds to the physical sense of an electrical circuit. 
For two-terminal line with dead-earthed neutral the iterative methods must 

be applied, which allow step-by-step calculation of unknown current İr (strictly 
speaking, the ground current from the right side of the line İgr) [8]. The peculiarities 
of expressions (33) applied for grids with small single-phase fault currents are 
considered in [10] (for more correct presentation see Sect. 4 of the present paper). 

3. THE PROPOSED METHOD AT DEVIATIONS OF SPECIFIC QUANTITIES  
OF A POWER LINE 

The proposed method uses several specific quantities of a power line, na-
mely: Rcsp; R0sp; Rgsp; X1sp; X0sp (see (4) and (5)). For the sake of simplicity, the 
influence of remaining (not mentioned) line parameters is supposed to be too weak 
and can be ignored. All the mentioned quantities may deviate from the values 
written in the memory of a protection device due to temperature change or other 
causes. Their influence on output quantities X1 and Rf can roughly be accounted for 
by the differential of these quantities with respect to each of the five specific 
quantities. As can be seen from the shown above complicated expressions, the 
conventional mathematical procedure for evaluation of the influence exerted by the 
mentioned deviations might be considered hopeless. The result can be obtained 
more quickly applying modern techniques of calculation. Preliminary conside-
rations allow for the statement that only specific active resistance of phase 
conductor Rcsp for direct sequence and specific active resistance of phase conductor 
R0sp for zero sequence (in high voltage networks) are of concern, since just these 
parameters change with temperature as a result of ambient temperature fluctuations 
and the current in a phase wire at the moment of fault. Indeed, for copper wires the 
temperature change of 50º C causes 20% change in resistance. At the same time, 
the other three specific quantities are temperature-stable (or the least instable). On 
the other hand, digressions of specific parameters as a result of a power line’s 
build-up can be taken into account by measurements or recalculations; however 
these cannot be applied to the specific resistances Rcsp and R0sp of the conductor 
because of its unpredictable temperature. 

The values of Rcsp and R0sp (as well as other mentioned parameters) are 
written into the protection device memory. At the time of fault occurrence, the 
instant actual values of these parameters differ from the written (being, e.g. R′csp 
and R′0sp). Naturally enough, the protection device gives out some X′1 value that 
deviates from its right value X1. If this device deals with actual conductor 
resistance Rcsp

a it would give out inerrable positive sequence reactance to fault 
place X1, so the task is to obtain Rcsp

a. In papers [10, 13], attempts were made to 
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compute the actual value of phase conductor specific active resistance using only 
voltages and currents at the monitoring point. These attempts, however, turned out 
to be erroneous; admittedly, the influence of Rcsp inconsistency could be dimi-
nished only by obtaining, directly or indirectly, this value in another way. For 
example, this can be calculated as a function of the phase conductor temperature, 
which depends on the current flowing through the phase conductor and on its 
ambient temperature. 

In turn, the influence exerted by the inconsistency in this parameter depends 
on the correlation between the single-phase earth fault and load currents. The 
greater the former is as compared with the latter, the weaker the influence of con-
ductor resistance. Hence, the phase conductor active resistance, to a different extent 
in high-voltage grids and in medium-voltage ones, influences the accuracy at 
calculation of the reactance to fault place X1. 

4. THE CASE OF HIGH-VOLTAGE NETWORKS 

To a high voltage network the following is inherent:  
1) transformer neutrals are dead-earthed, which causes great single-phase earth 

currents, therefore load currents can be neglected (this feature is of no signi-
ficance when specific active resistance is known);  

2) faulty phase voltage is of the order of sound (undamaged) phase voltage;  
3) the line may have a shield wire; as a result, the phase conductor active 

resistance for positive sequence Rc and for zero sequence R0 are different.  
At the beginning, we will find X1 by (33) for the Rcsp and R0sp values written 

in the protection device and the other three specific quantities. 
Based on these specific quantities and on the 

measured currents İph and İg or İ0, the intermediate 
quantities h, f′ and f′′ should be calculated. To find the 
first approximation of X1

(1) (and Rf
(1)) by (33) using 

apparent quantities Ra and Xa given by the protection 
device, the fault coefficient  must be found (because k′f 

and tg φf are directly determined by ). However, to find 

, the fault current İf (being the sum of measured current 
İg and unknown current İgr (Fig. 2)) should be known. Considering Figs. 1 and 2, 
the first approximation for the fault current can be determined as   
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Fig. 2. Estimation of fault 

current in iterative process. 

)1(
0

00)1(

r

slin
gf

Z
ZZII

&

&&
&& +

= ,                          (38) 

where zero sequence impedance Ż0r to the right of the fault point is obviously 

slinr ZZZZ 0
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Here, for the first time, the zero sequence impedance of the system Ż0s at the line’s 
opposite side appears. For two-terminal lines, this quantity must be known a priori 
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and written in the device memory. Now it remains to calculate the first approxi-
mation for zero sequence impedance to fault place Ż0

(1). To do this, ratio  is intro-
duced; its value is calculated using corresponding specific quantities: 
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Using (40), the last quantity necessary for determination of İf (1) can be found: 
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provided there is some initial value of the reactance to a fault place (Xass), assuming 
for the initial value, e.g., that the fault has occurred at the middle of the protected 
line; i.e. taking X1ass

(0)=X1lin/2 we will obtain the first calculated value X1
(1). Taking 

the next assumed value of reactance to fault place X1ass
(1)  we obtain value X1

(2) that 
is nearer to X1ass

(1) than for the X1
(1) –X1ass

(0) pair. We should continue the iteration 
process, observing that in each step the obtained value approaches its assumed 
value until the desired precision is reached.  

This way of proceeding ensures the convergence of iteration process in all 
cases, provided the calculation formulas correspond to the basic equation (10) 
when the true reactance to fault place inserted in (41) reflects on itself by (33). 

The influence of variations in the specific active resistance is in an admissib-
le range because the line load current is small as compared with the single phase-
earth fault current. A 20% Rcsp variation against its value written in the protection 
device causes a 1–4 % error of X1. 

5. THE CASE OF A DISTRIBUTION NETWORK 

The power lines of a distribution network are assumed to be radial, with no 
shield wires, hence the active resistance of a phase conductor for positive and zero 
sequence is the same (see Eq. (13)). 

The ; İph and İg fault quantities are much smaller in these networks than 
those in grids with a direct earthed neutral. When a single-phase-earth fault occurs, 
the customers continue to receive electricity, and current İph is of the load current 
order, being therefore accurately measurable. Ground current İg is equal to the 
output current of Ferranti’s measuring transformer and therefore, despite its com-
paratively small value, can also be measured precisely enough. On the contrary, 
phase voltage  is 1–2 orders less than the rated value. In these circumstances, 
the precision of Ża determination entirely depends on the accuracy of obtaining the 

 value. We will leave the problem of measuring voltage  to technicians. 
There is an additional peculiarity: the voltage drop on a fault resistance is 
comparable with the phase-to-earth voltage . Therefore the apparent reactance 
Xa to the fault place strongly differs from the direct sequence reactance X1 to the 
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U& ph
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fault place; this peculiarity can be successfully dealt with applying the apparent 
impedance method expounded in Sect. 2. 

A simplified circuit diagram of the network with a phase-to-earth fault is 
shown in Fig. 3. The initial formulas for currents are the following: 

;3 phsgcsg ECjI && ω=     ;    ;      phbfcbf ECjI && ω3= phc ECjI && ′=′ ω3

CjIc ′′=′′ ω3& ;    ;    phccc ECjIII &&&& ω3=+= ′′′ CCC ′′+′= ;            (42) 
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R
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RLcsgFe IIII &&&& ++= ;  ;    , clinFef III &&& += Feg II && =

where İcsg is the capacitive phase-earth current of a sound part of the grid; İc is the 
capacitive current of the faulty line in the span from substation to fault place F (at 
the sought-for distance); İclin is the capacitive current of the faulty line grid (a faulty 
line with other lines connected to it); İFe is the output current of Ferranti’s 
transformer; capacitances C′ and C′′  and corresponding currents I′c and I′′c are 
shown separately to stress their distributed nature and their influence on the voltage 
drop from the monitoring point to the fault place; İcs is the symmetrical phase-to-
phase capacitive current in the span from the substation to fault place F (not re-
presented in (42)); İf  is the current through the fault place; İg is the current through 
ground at the sought-for distance; the other current designations are shown in 
Fig. 3. For calculation of capacitive currents, the specific capacitive currents İcsp in 
A/km can be used; then the formulas for their calculation become very simple: 

sgcspcsg ljII =& ;    ;    ,                             (43) ljII cspc =&
lincspclin ljII =&

where lsg is the total length of sound (undamaged) lines of the grid; l is the distance 
to the fault place; llin is the total length of faulty line grid (all lengths in km). 

Currents İcsg; İcbf; İc; İclin; İL; İR; İf; İFe arise as a result of a single-phase earth 
fault. Besides, there are symmetrical capacitive phase currents resulting from 
phase-to-phase capacitances of a line. They are calculated applying specific sym-
metrical capacitive current İcssp: 

ljII csspcs =& ;      .                                          (44) lincsspcslin ljII =&

Faulty phase current İph is 

cslinclinFeloph IIIII &&&&& +++= .                                            (45) 

Load current İlo can be decomposed into symmetrical components İ1lo, İ2lo. 
Due to the distributed nature of capacitive currents of a faulty line, on the 

span from Ferranti’s transformer to fault place F, for phase voltage  we cannot 

apply formula (10) without changing it. For , taking into account that for the 
power line Ż1 = Ż2, we should write: 

phU&

phU&

ffcfllcflph RIZIIZIZIIU &&&&&&&&& +Δ+++Δ+= 00012111 )()( .                         (46) 
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Fig. 3. Scheme of the grid with small phase-to-earth currents; the outlook of currents  

with phase-to-earth fault at point F; N – neutral of the grid; ĖA; ĖB; ĖC – the phase EMFs,   
Ėph=ĖA; Uph – phase voltage of the faulty phase; Rf – fault transient resistance 

 
Currents Δİ1cf and Δİ0cf appear because of the distributed character of cur-

rents İc and İcs (see Fig. 3). The currents İph, İ1l, İ2l, İ0l can be measured and 
calculated out of three-phase currents or their constituent parts:   

Fecslinclinloloph IIIIII &&&&&& ++++= 21 ;     
3111
Fe

cslinclinlol
I

IIII
&

&&&& +++= ;       (47)  

3222
Fe

clinlol
I

III
&

&&& ++= ;     
30
Fe

l
I

I
&

& = . 

We should determine currents İ1clin and İ2clin which appear as a result of 
capacitive current İclin of the faulty line grid. From Fig. 4 we can determine that   

clinA II && = ;    clinB IjI && )
6
35.0( −−= ;     clinC IjI && )

6
35.0( +−=  .                 (48) 

clinCBAclin IIaIaII &&&&&
3
2)(

3
1 2

1 =++= ;                                                          (49) 

clinCBAclin I)IaIaI(I &&&&&
3
1

3
1 2

2 =++= ;    0
3
1

0 =++= )III(I CBAclin
&&&&   
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In so doing, currents Δİ1cf and Δİ0cf are implicit 
(not measured). Their value may be estimated by their 
participation in the formation of phase voltage (46). 
Current Δİ1cf consists of two constituents: Δİ′1cf and 
Δİ′′1cf. Figure 4 explains the determination of current İc 
(could not be confused with current  İC in phase C) 
flowing to the distance l (from the protection device to 
the fault place) in phase A. Capacitive currents of phases 
C and B,  İC and İB, are represented as flowing with 
unchanged magnitude over the span l (Figs. 3 and 4), 

therefore: 

Fig. 4. Faulty phase 
capacitive currents. 

cA II && = ;     cB I)j,(I &&
6
350 −−= ;     cC I)j,(I &&

6
350 +−= .          (50) 

In reality, only the current in phase A, İc, flows unchanged over span l. 
Currents in phases B and C (in accordance with (50)) near the fault place are close 
to zero. In the direction toward the protection device they grow linearly, and at the 
monitoring point their magnitude corresponds to Eq. (50). This is equivalent to the 
situation when in phases B and C currents ΔİB and ΔİC, which are half of these 
currents determined by (50), flow in the opposite direction. Hence: 

0=Δ AI& ;      cB IjI && )
12

325,0( +=Δ ;     cC IjI && )
12

325,0( −=Δ ,                   (51) 

which gives: 

cCBAcf IIaIaII &&&&&
3
5,0)(

3
1' 2

1 −=Δ+Δ+Δ=Δ .                                 (52) 

The current Δİ′′1cf   is calculated using symmetrical capacitive current İcs. The 
same considerations as in the case of Δİ′1cf  lead to the expression for this current: 

cscf II &&
2
1

1 −=′′Δ .                                                     (53) 

Now current Δİ1cf  can be determined as 

)5.0
3
5.0(111 csccfcfcf IIIII &&&&& +−=′′Δ+′Δ=Δ .                                (54) 

Currents Δİ2cf  and Δİ0cf  are calculated using currents (51): 

0)(
3
1 2

2 =Δ+Δ+Δ=Δ CBAcf IaIaII &&&& ;                                      (55) 

cCBAcf IIIII &&&&&
3
5.0)(

3
1

0 =Δ+Δ+Δ=Δ .                                      (56) 
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Expression (46) for faulty phase voltage  is not fit for the method 

expounded in Sect. 2, which is based on expression (10). The  of expression 
(46) is to be divided into two parts: 

phU&

phU&

phphph UUU &&& Δ+′=                                                   (57) 

with the first part: 

phphfphflllph UURIkZIZIIU Δ−=+++=′ &&&&&&&&&
0,01,2,1 )( ;                    (58) 

and the second one: 

0011 ZIZIU cfcfph
&&&&& ΔΔΔ += .                                           (59) 

After we have found the first part  of the phase voltage , the 

determination of X1 and Rf, is the routine procedure described in Sect. 2. 
phU ′& phU&

To determine the distance to fault place l precisely, we must know currents İc 
and İcs, whereas for finding the latter ones it is necessary to know the distance l to 
the fault place, which is the sought-for quantity. To break this vicious circle, the 
iterative calculations must be done. At the start, the initial distance l(0) to fault place 
must be assumed – this can be half the faulty line length. Applying the iteration 
process, which is similar to that for high voltage lines, the distance to fault place 
can be found. The iteration process converges fast. However, when specific re-
sistance Rc of phase conductor diverges from the value written in the device 
memory, the calculated distance to fault place changes significantly. The calcu-
lations have shown that for an unloaded power line the deviation of Rcsp does not 
influence the results, while the results for a loaded line strongly depend on the ratio 
ground current/load current. The data acquired for Rcsp = 0.306 Ω/km are the 
following: for the ratio 0.12 the distance error is 50% at ΔRcsp = 20%, and for the 
ratio 0.03 the distance error is 200%. Obviously, such an outcome is unacceptable. 
An attempt was made to recalculate conductor resistance Rcsp but it was unsuc-
cessful, being based on expression (1) only. Indeed, to find the third unknown Rcsp  
one more equation must be applied, however this equation requires one more 
measured quantity, which is impossible when only voltages and currents are 
measured at the monitoring point. Obtaining the temperature of phase conductor 
would solve the problem. The error drastically diminishes when Ferranti’s 
transformer current (approximately equal to the fault current (see (42)) grows. 
Already at this current equaling half the load current satisfactory results appear. If 
the measures to reduce the influence of conductor active resistance inconsistency 
are taken, the distance to the fault place can be determined with a desirable 
precision. 

To perform calculations, the line parameters Rcsp; Rgsp; X1sp; X0sp must be 
written in the device memory, İph; İg;  must be measured, and then Ż1sp; Ż0sp; phU&
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NK&

phU&

; ; a; b; c calculated. The iteration procedure starts with an assumed initial 
value of the distance to fault place lass

(0), which, for example, can be taken half the 
faulty line length. 

k&

aZ&

The calculational algorithm could be presented as follows. 
Perform the first iteration with l = lass

(0) according to the written formulas to 
find the quantities in the following sequence: Ż1; Ż0; İc; İcs; Δİ1cf; Δİ0cf ; ; 

; ; ; ; ; ; ; d′; d′′; h; f′; f′′; tg ϕf ; A; C (for verification of 
preceding formulas); Rf; X1; at the end, find  l(1). 

phU&Δ

clinI& fI& fk& dXk& dRk&

Do the second iteration with lass
(1) = l(1) to receive l(2). 

Continue in such a way putting the last calculated value of distance to fault 
place l for the assumed value lass of the next iteration until acceptable accuracy is 
attained. The results of iterative calculations converge fast. 

6. CONCLUSIONS 

1. The apparent impedance method for determination of the distance to single-
phase earth fault can be applied to one-terminal and two-terminal high-voltage 
lines and to the radial lines of distribution networks. 

2. This method involves the iteration procedure. 
3. The instability of phase conductor resistance deserves special attention due to 

its unpredictable nature and wide range of deviations causing inadmissible 
errors in distribution networks. To deal with it, the wire temperature should be 
known at the fault initiation instant, otherwise the single-phase earth fault 
current is to be raised above the level of half the load current value. 
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“REDZAMĀS PRETESTĪBAS” METODE 

J. Survilo 

K o p s a v i l k u m s  

Redzamo pretestību no vienfāzes īsslēguma ar zemi var aprēķināt, pielietojot 
distantaizsardzības klasisko algoritmu. Pateicoties šīs pretestības kompleksam 
raksturam, algoritma izteiksmi var sadalīt divos vienādojumos. Arī divus nezinā-
mos – induktīvo pretestību līdz bojājuma vietai un bojājuma pretestību – var 
izrēķināt, ja bojātās fāzes spriegums un strāva kā arī zemes strāva vai līnijas 
nullsecības strāva ir zināmas. To var sasniegt, pateicoties īpašai matemātiskai 
procedūrai, kas šeit tika nosaukta par redzamās pretestības metodi. Izmantojot šo 
metodi, ir nepieciešams zināt īpatnējus līnijas parametrus. Augstsprieguma līnijām 
un sadales tīkla radiālajām līnijām mērķi var sasniegt, pielietojot iteratīvos ap-
rēķinus ar nosacījumu, ka pietiekoši precīzi ir izmērīts bojātās fāzes spriegums 
sadales tīklos. Starp citiem līnijas parametriem fāzes vada īpatnējās aktīvās 
pretestības mainīgums pelna īpašu uzmanību tās nenoteiktības un noviržu plašā 
diapazona dēļ, kas noved pie nepieļaujamām kļūdām sadales tīklos. Lai novērstu šo 
trūkumu, jāzina fāzes vada temperatūra vienfāzes zemesslēguma iestāšanās laikā. 
Ja to nevar izpildīt, tad jāpanāk, lai zemesslēguma strāva būtu lielāka par pusi no 
slodzes strāvas.            
27.12.2007. 
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