
1.	 Introduction

The accommodation history of rift basins is strong-
ly linked to their mechanical subsidence regime 
with episodic pulses of extension that create space 
for sediment accumulation at very fast rates (Mar-
tins-Neto & Catuneanu, 2009). A sequence-strati-
graphical model for rift basin defines the dominant 
stratigraphical patterns that are commonly encoun-
tered in tectonic settings and provides a framework 
for understanding the process-response relation-
ship between controls on accommodation and the 
resultant stratigraphical architecture of rift basins 
(Martins-Neto & Catuneanu, 2009).

The Kachchh Basin in western India is a peri-con-
tinental embayment in an east-west-trending gra-
ben between the Nagar Parkar-Allah bund and 
North Kathiawar faults, which is filled by synrift 
sedimentary rocks within two major cycles: a trans-
gression with the opening of the rift and a regression 
with rift failure during the Late Cretaceous (Biswas, 
1999). The Jurassic strata formed in a shallow-ma-
rine, inner-shelf environment during transgression 
(Biswas, 1999), where normal faults controlled the 
creation of accommodation space for syntectonic 
deposition in a rift basin (Biswas, 1983, 2005).

The basin margin successions have been stud-
ied by various workers for their lithostratigraphy 
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(Biswas, 1971, 1977, 2016; Fürsich et al., 2001) and 
structure and tectonics (Biswas, 1983, 2005). Several 
workers have also studied the palaeoenvironment 
of these successions using different approaches 
such as palaeontology (Guha, 1977; Khosla et al., 
2003), ichnology (Howard & Singh, 1985; Shringar-
pure, 1986; Kulkarni & Ghare, 1991; Fürsich, 1998; 
Patel et al., 2008, 2009, 2014; Joseph et al., 2012a; 
Darngawn et al., 2018) and sedimentology (Patel et 
al., 2010; Joseph et al., 2012b). Attempts have also 
been made to analyse the succession on the basis of 
sequence stratigraphy (Patel et al., 2010, 2013; Patel 
& Joseph, 2012).

The Mesozoic succession of the Kachchh Basin 
consists mainly of rift-filled deposits exposed in iso-
lated patches and ranging in age from Aalenian to 
Albian (Biswas, 2016). Chorar Island is an isolated 
subbasin along the strike of the Island Belt Fault, 
comprising Bajocian to Callovian deposits. The 
present paper is focused mainly on an analysis of 
sedimentological and ichnological data for the syn-
rift succession of Chorar Island (eastern Kachchh 
Basin), in order to deduce the genetic cycles and 
also discuss the implications of global eustatic sea 
level during the Bajocian to Callovian stages. The 
sedimentological and ichnological data will throw 
light on the dominant process and the process re-
sponse of Middle Jurassic strata with respect to 
global sea level within the subbasin.

2.	 Geological setting

Chorar Island lies in the easternmost part of the is-
land belt zone of the Kachchh Basin between lati-
tude N 23°41'06" to N 23°57'00" and longitude E 
71°00'55" to E71°18'36", in the Patan District of Gu-
jarat (Fig. 1) along the strike of the Island Belt fault. 

The east-west-trending Island Belt Fault (IBF) forms 
a series of horsts and grabens in the northern part of 
the Kachchh Basin, consisting of four major uplifts 
in the form of the Patcham, Khadir, Bela and Chorar 
islands (Biswas, 2005). This uplift exposes the basin 
margin synrift succession of Middle Jurassic age re-
corded here. The succession in Chorar Island is char-
acterised by distinct and unique facies associations 
that have recently been described with detailed data 
on stratigraphy and sedimentology by Patel et al. 
(2018) and on ichnology by Darngawn et al. (2018).

Chorar Island, on the eastern flank of the basin, 
contains strata that range in age from the Bajocian 
to Callovian and comprises the Khadir and Gadha-
da formations. A shale-dominated sequence of the 
Hadibhadang Shale Member is exposed at the base 
of the succession and is overlain by a mixed silici-
clastic-carbonate-dominated Hadibhadang Sand-
stone Member of the Khadir Formation. The top of 
the Hadibhadang Sandstone Member is character-
ised by coralline limestone which is equivalent to 
the Raimalro Limestone Member of the Goradongar 
Formation (Biswas, 2016) and the Patcham Forma-
tion of Fürsich et al. (2013). The whole succession 
is capped by the Ratanpur Sandstone Member of 
the Gadhada Formation (Biswas, 2016; Patel et al., 
2018) which consists of thickly bedded, ferruginous 
sandstone, with cross-bedded white sandstone and 
thinly bedded mudstone and shales.

3.	 Sedimentology and ichnology

The Middle Jurassic succession (Fig. 5) of Chorar 
Island is exposed in discontinuous and isolated 
patches and comprises a ~109-m-thick succession 
of the Khadir Formation (Hadibhadang Shale and 
Hadibhadang Sandstone members) and the Gadha-

Fig. 1. Location and geological map of Chorar Island
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da Formation (Ratanpur Sandstone Member). 
Our sedimentological analysis has demonstrated 
nine lithofacies, viz., a ferruginous sandstone, a 
cross-bedded white sandstone, an allochemic sand-
stone, mudstone, a coralline limestone, a sandy al-
lochemic limestone, a micritic sandstone, a sandy 
micrite and a shale facies (Patel et al., 2018). The fer-
ruginous sandstone, cross-bedded white sandstone 
and micritic sandstone facies are moderately biotur-
bated, while the sandy allochemic limestone facies 
is relatively more bioturbated and yields sixteen 
identifiable ichnogenera (Arenicolites, Asterosoma, 
Curvolithus, Didymaulichnus, Diplocraterion, Gyro-
chorte, Halopoa, Hillichnus, Lockeia, Megagrapton, Pal-
aeophycus, Planolites, Protovirgularia, Rhizocorallium, 
Skolithos and Thalassinoides) (Darngawn et al., 2018), 
which document a moderate diversity in behaviours 
(i.e., dwelling, feeding and crawling). The charac-
teristic set of an environmentally related group of 
trace fossils also revealed five ichnoassemblages 

representing the Skolithos (Skolithos assemblage) and 
Cruziana (Gyrochorte, Hillichnus, Rhizocorallium and 
Thalassinoides assemblages) ichnofacies. Each ich-
noassemblage is characterised by a particular suite 
of trace fossils that reflect unique hydrodynamic 
conditions, substrate consistency and bathymetry 
(Joseph et al., 2012a) during deposition.

The micritic sandstone (siliciclastic: 65–70 per 
cent, Rx: 5–10 per cent, Micrite: 20 per cent) attains 
a thickness of +13.3 m, is grey to brownish in col-
our and characterised by cross-bedding and ripple 
marks, as has been observed in the Hadibhadang 
Sandstone and Hadibhadang Shale members. The 
Micritic Sandstone of the Hadibhadang Sandstone 
Member yields Halopoa (Fig. 2A), Palaeophycus (Fig. 
2B), Rhizocorallium, Thalassinoides (Fig. 2C) that form 
the Thalassinoides ichnoassemblage.

The sandy allochemic limestone, 1–2 m thick, is a 
bright yellow-coloured mixed siliciclastic-carbonate 
rock, as observed in the Hadibhadang Sandstone 

Fig. 2. A – Halopoa; B – Palaeophycus; C – Thalassinoides of the micritic sandstone facies of the Hadibhadang Sandstone 
Member (top view); D – Gyrochorte; E – Hillichnus (scale bar equals 50 mm); F – Rhizocorallium; G – Thalassinoides at 
sediment-sediment interface in the sandy allochemic limestone facies of the Hadibhadang Sandstone Member (top 
view); H – Skolithos in the cross-bedded white sandstone facies (side view); I – Skolithos in the ferruginous sandstone 
facies of the Ratanpur Sandstone Member (top view; scale bar equals 50 mm)
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Member of the Khadir Formation. The carbonate 
component (allochems: 35–40 per cent, micrite: 15–
20 per cent) exceeds the siliciclastic (35–40 per cent) 
component. This unit is highly fossiliferous and 
yields bivalves (Trigonia, Corbula and Gervinella), al-
gae, echinoid spines, foraminifera and brachiopods 
and is also bioturbated in nature. This facies recurs in 
time and is preferentially bioturbated by a variable 
number and types of organisms that produced Aren-
icolites, Asterosoma, Didymaulichnus, Gyrochorte (Fig. 
2D), Halopoa, Hillichnus (Fig. 2E), Lockeia, Megagrap-
ton, Palaeophycus, Planolites, Protovirgularia, Rhizo-
corallium (Fig. 2F) and Thalassinoides (Fig. 2G). The 
distinct occurrence of trace fossils in different bands 
allows the distinction of four assemblages, namely: 
Hillichnus, Rhizocorallium, Gyrochorte and Thalassi-
noides. The Hillichnus assemblage consists mainly 
of Hillichnus and Protovirgularia; the predominance 
of Hillichnus, illustrating a complex deposit-feeding 
behaviour produced by tellinoid bivalves (Bromley 
et al., 2003) and crawling structures such as Protovir-
gularia made by bivalves (Carmona et al., 2010). The 
Rhizocorallium assemblage comprises mainly Areni-
colites, Asterosoma, Didymaulichnus, Lockeia and Rhizo-
corallium, documenting a predominance of deposit 
feeders such as polychaetes (Chamberlain, 1977), 
worms (Pemberton, 2001), gastropods (Hakes, 1985), 
bivalves (Seilacher, 1953) and crustaceans (Seilacher, 
2007), respectively; these indicate well-oxygenated, 
nutrient-rich soft substrates. The Gyrochorte assem-
blage encompasses mainly dwelling structures of 
the Arenicolites and Palaeophycus (Osgood, 1970) and 
feeding structures such as Gyrochorte, Megagrapton 
and Planolites, made by worm-like producers (de 
Gibert & Benner, 2002; Knaust, 2013) at the sedi-
ment-sediment and sediment-water interface in ox-
ygenated sediments. The Thalassinoides assemblage 
consists of Rhizocorallium, Halopoa and Palaeophycus, 
with T. horizontalis and T. paradoxicus; Thalassinoides 
is frequently related to oxygenated settings (Savrda 
& Bottjer, 1986) and is produced by decapod crusta-
ceans (Myrow, 1995). The predominance of deposit 
feeders indicates that the sandy allochemic lime-
stone was a well-oxygenated and nutrient-rich sub-
strate (Bromley & Frey, 1974; Kern & Warme, 1974).

The allochemic sandstone facies (Ratanpur Sand-
stone Member) is light brown to dirty yellow in col-
our, with bed thicknesses of 0.5 m, comprising of 60 
per cent siliciclastic and 40 per cent of carbonate ma-
terial (allochems, 30 per cent and micrite 10 per cent).

The Mudstone facies (Dunham, 1962) is also rec-
ognised in the Ratanpur Sandstone Member and is 
characterised by greyish to brown-coloured, with 
thin intercalations of shales. It shows less than 5 per 
cent of allochems (micritised bioclasts).

The Coralline limestone facies of the Hadibha-
dang Sandstone Member of the Khadir Formation 
is grey to dirty yellow in colour and attains a maxi-
mum thickness of about 2 m. It yields bivalves and 
large corals which are diagenetically modified and 
form large calcite crystals, having lost their inter-
nal structures. Siliciclastic components constitute 
about 5–10 per cent of quartz grains which are fine 
grained, angular and poorly sorted, indicating neg-
ligible clastic influx.

The Sandy micrite facies (siliciclastic: 30–40 per 
cent, allochems: 10–20 per cent, micrite: 30–40 per 
cent) is observed in the Hadibhadang Sandstone 
Member of the Khadir Formation, characterised by 
blackish coloured, cross-bedded and planar, lami-
nated intercalated with shales. The shale is charac-
terised by a grey colour and is gypseous, occurring 
as intercalations in the Ratanpur Sandstone, Had-
ibhadang Sandstone and Hadibhadang Shale mem-
bers.

The cross-bedded white sandstone and ferrugi-
nous sandstone facies are observed in the Ratanpur 
Sandstone Member of the Gadhada Formation. The 
former facies is friable, off-white to yellowish in 
colour and characterised by cross-bedding, pinch-
ing towards the western side of the dome. It shows 
an increase in calcareous matrix and hence repre-
sents a micritic sandstone facies. The cross-bedded 
white sandstone facies is also bioturbated in nature 
and yield trace fossil genera such as Skolithos, Plan-
olites and Thalassinoides, representing the Skolithos 
assemblage. The ferruginous sandstone facies is 
dark red to brownish in colour, characterised by 
different types of ripple marks and cross bedding 
and containing body fossils of bivalves and gastro-
pods, as well as fossilwood. It is moderately biotur-
bated and yields ichnogenera such as Arenicolites, 
Diplocraterion, Palaeophycus and Skolithos (Fig. 2H), 
representing the Skolithos assemblage. This assem-
blage is dominated by vertical dwelling burrows of 
opportunistic suspension feeders which were made 
in unconsolidated, poorly sorted, shifting-substrate 
sediments in high-energy settings (Seilacher, 1967; 
Pemberton & MacEachern, 1995).

The Sandy allochemic limestone and micritic 
sandstone facies of the Hadibhadang Sandstone 
Member of the Khadir Formation are dominated by 
cylindrical, branched to unbranched, large-sized, 
horizontal endichnial/hypichnial structures such 
as Asterosoma, Curvolithus, Didymaulichnus, Gyro-
chorte, Halopoa, Lockeia, Planolites, Palaeophycus, Pr-
otovirgularia, Rhizocorallium and Thalassinoides. The 
T-shaped or curved Y-shaped, branched Thalassi-
noides is considered a typical member of the Cru-
ziana Ichnofacies (Seilacher, 1967), colonising un-
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der reduced energy conditions in shallow-marine 
environments. The Cruziana Ichnofacies indicates 
low to moderate energy conditions and unconsol-
idated, poorly sorted, soft substrates and plenty of 
organic detritus in shallow-water marine settings 
(Pemberton et al., 2001). The ferruginous sandstone 
facies and cross-bedded white sandstone facies con-
tain ichnogenera such as Arenicolites, Diplocraterion, 
Planolites and Skolithos (Fig. 2I); these are typical 
members of the Skolithos Ichnofacies. The fine- to 
coarse-grained clastic sedimentary rocks, the pres-
ence of cross-bedding and the predominant occur-
rence of vertical burrows indicates unconsolidated, 
poorly sorted, moderate to high wave and current 
energy conditions and shifting substrates that were 
exploited by opportunistic animals in middle shore-
face environments (Pemberton et al., 2001).

4.	 Sequence stratigraphy

A model-dependent workflow has been consid-
ered in order to assess the relatively conforma-
ble succession of Chorar Island. The genetic se-
quence-stratigraphical model (Galloway, 1989) 
is considered with maximum flooding surfaces 
(MFS) as sequence boundaries. This model is inde-
pendent of subaerial unconformity and recognis-
es the importance of separating forced regressive, 
normal regressive (lowstand and highstand) and 
transgressive deposits as distinct genetic units (Ca-
tuneanu et al., 2009). The Chorar Island succession 
lacks Lowstand Systems Tract (LST) and shows ret-
rogradation with flooding surface in Transgressive 
Systems Tract (TST), overlain by a progradational 
Highstand Systems Tract (HST), suggesting a typ-
ical rift sequence rather than sequence developed 
in a tectonically stable basin (Martins-Neto & Ca-
tuneanu, 2009).

4.1.	Genetic sequence stratigraphy

The Middle Jurassic synrift succession of Chorar Is-
land shows a major base level rise with a minor fall 
at the end of the Bajocian. It comprises one major 
sequence of approximately 6 myr, of 2nd order hier-
archy, which is further subdivided into two cycles 
of 3rd order genetic sequence of 3 myr each (Vail et 
al., 1991; Catuneanu, 2006) separated by Flooding 
Surface (FS) at the end of the Bathonian. It compris-
es TST-I and HST-II, where LST-I is absent due to 
a lack of exposure in Chorar Island. However, LST 
has been observed in the neighbouring Khadir Is-
land along the strike of the Island Belt Fault where 

the succession is characterised by polymictic con-
glomerate deposits of an alluvial fan environment 
(Biswas, 1993).

4.1.1.	Trangressive Systems Tract (TST) – I
The TST-I, observed in the Hadibhadang Shale and 
Hadibhadang Sandstone members of the Khadir 
Formation, is represented by a thick intercalated 
sequence of shale with mixed siliciclastic-carbonate 
sedimentary rocks. The succession shows a gradual 
base level rise with a minor fluctuation at the end of 
Bajocian, represented by a ~23-m-thick argillaceous 
shale (Fig.3A) succession interrupted by cross-bed-
ded micritic sandstone (Fig. 3B) in the Hadibha-
dang Shale Member. A further rise in the base level 
during the Bathonian resulted in deposition of a 
~31-m-thick intercalated sequence of mixed silici-
clastic-carbonate sediments which include sandy 
allochemic limestone, micritic sandstone and sandy 
micrite with shales and coralline limestone at the 
top of the Hadibhadang Sandstone Member.

The thick argillaceous shales overlain by mic-
ritic sandstone represent a gradual increase in the 
base level, interrupted by a short-term decrease in 
local accommodation space with a change in hydro-
dynamic conditions which allowed deposition of 
coarse-grained micritic sandstone towards the end 
of the Bajocian. Haq et al. (1988) and Ruban (2015) 
also depicted the worldwide gradual transgression 
during the Bajocian, with short-term changes as re-
gression. The intercalated sequence of mixed silici-
clastic-carbonate sediments indicates an increase in 
carbonate content. The carbonate precipitation and 
secretion by in-situ organisms (coral) during the Ba-
thonian marks an increase in accommodation space 
which is also reflected in bioturbation patterns.

The sandy allochemic limestone facies, which 
overlies the micritic sandstone facies, is intensely bi-
oturbated by Hillichnus (Fig. 3C). This facies recurs 
with time and is preferentially bioturbated within 
the systems tract with diverse trace fossil types of 
Rhizocorallium, Gyrochorte and Thalassinoides assem-
blages of the Cruziana Ichnofacies (Seilacher, 1967). 
The presence of Hillichnus in sandy allochemic 
sandstone indicates a shallow-marine environment 
(Ekdale & Ekdale, 2018), while the Rhizocorallium 
assemblage represents a shoreface to deeper marine 
environment (Worsley & Mørk, 2001). The Gyro-
chorte assemblage of rippled sandy allochemic lime-
stone facies (Fig. 3D) represents the Cruziana Ichno-
facies (Seilacher, 1967). It is also developed in the 
rippled, mixed carbonate-siliciclastic grainstones of 
a shallow, storm-dominated shelf (Picard & Uygur, 
1982; Lord, 1985), suggesting further upward-deep-
ening shoreface environments.
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The Thalassinoides assemblage recurs and is ob-
served in micritic sandstone and sandy allochemic 
limestone facies, documenting intense bioturbation 
at the sediment-sediment interface. This sandy al-
lochemic limestone is thickly bedded and consists 
mainly of Thalassinoides horizontalis and T. para-
doxicus. Intense bioturbation and the appreciable 

amount of siliciclastic-bioclastic material suggest 
that deposition took place in a lower shoreface en-
vironment (Joseph & Patel, 2015). Moreover, Thal-
assinoides burrows are frequently related to oxygen-
ated settings and soft, yet fairly cohesive, substrates 
indicate a lower shoreface environment (Bromley & 
Frey, 1974; Kern & Warme, 1974).

Fig. 3. A – Argillaceous shale, the oldest rock unit exposed in the core of the Chorar dome (scale bar equals 5 feet); B – 
Planar-trough, cross-bedded micritic sandstone facies marking a change in sediment influx towards the upper part 
of the Hadibhadang Shale Member; C – Hillichnus- bearing sandy allochemic limestone developed at the base of the 
Hadibhadang Sandstone Member, marking the onset of TST-II; D – Ripples in sandy allochemic limestone; E – Top 
view of large, well-preserved, in-situ coral on the bedding surface of coralline limestone at the close of TST-II; F – 
Vertical view of an in-situ coral skeleton with recrystallised large calcite crystals (arrow)
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The sandy allochemic limestone of TST-I con-
tains a variable amount of micrite and allochems 
with horizontal biogenic structures. These pieces of 
evidence indicate fluctuations of energy conditions 
and bathymetry in a shoreface environment, sug-
gesting an increase in accommodation space form-

ing aggradational deposits in a synrift basin margin 
succession.

The thickly bedded sandy allochemic limestone 
is overlain by the coralline limestone facies (2.7 m) 
that marks the top of TST-I. This facies is character-
ised by corals of large diameters (Fig. 3E, F) which 

Fig. 4. A – Photomicrograph showing dolomite crystals in the coralline limestone facies at the top of the Hadibhadang 
Sandstone Member; B – Thinly bedded mudstone marking the flooding surface and onset of RST-II in the Ratanpur 
Sandstone Member (scale bar equals 150 cm); C – Photomicrograph of allochemic sandstone consisting predomi-
nantly of quartz along with allochems such as pellets (p) and algae (a), indicating a change in clastic influx; D – Ag-
grading, thickly bedded, cross-bedded white sandstone; E – Ferruginous sandstone facies containing fossilwood (F) 
of the Ratanpur Sandstone Member, marking the fall of base level
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are sparitised and dolomitised (Fig. 4 A) with al-
lochems including algae and shell fragments. The 
absence of primary sedimentary structures and 
well-developed corals with a negligible amount of 
clastic sediments suggest offshore environment. 
The coralline limestone that is overlain by thinly 
bedded mudstone facies (Fig. 4 B), intercalated with 
shales, representing calm and oxygenated offshore 
conditions, suggest a maximum sea level rise dur-
ing the late Bathonian, marking the Flooding Sur-
face (FS) that also coincides (Fig. 5) with the global 
sea level rise (Haq et al., 1988; Haq & Al-Qahtani, 
2005). Thus, the TST-I represents aggradational 
deposits in a middle shoreface to offshore environ-
ment.

4.1.2.	Highstand Systems Tract (HST)-II
HST-II is represented by a 55-m-thick succession of 
the Ratanpur Sandstone Member of the Gadhada 
Formation, of Callovian age. It comprises mudstone 
facies intercalated with argillaceous shale which is 
overlain by the allochemic sandstone facies, which 
in turn is overlain by the cross-bedded white sand-
stone and ferruginous sandstone facies of lower 
and middle shoreface environments, respectively.

The mudstone facies (Fig. 4B) is characterised 
by thinly bedded lime/carbonate mud, intercalat-
ed with shales, which indicate calm conditions of 
lower shoreface-offshore environments. The basal 
fine-grained succession that overlies the flooding 
surface indicates the onset of a progradational coast-

Fig. 5. Composite litholog of the Middle Jurassic succession of Chorar Island, showing representative facies and associ-
ated ichnofossil genera within each genetic cycle and corresponding to global sea level curve
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line (Martins-Neto & Catuneanu, 2009), overlain by 
allochemic sandstone. This allochemic sandstone 
contains ~60 per cent of siliciclastic component with 
abundant pellets (Fig. 4C), suggesting an increase 
in clastic sediment supply in a tidally influenced 
shoreface zone and a reduction of accommodation 
space during the early Callovian and marking the 
beginning of HST-II (Fig. 5).

The allochemic sandstone facies is overlain 
by thick, friable, poorly sorted and bioturbated, 
cross-bedded white sandstone facies (Fig. 4D), 
which in turn is overlain by the cross-bedded fer-
ruginous sandstone (Fig. 4E) facies that yields body 
fossils such as bivalves, gastropods, as well as drift-
wood (Fig. 4F) which are bioturbated at varying 
intensities. The predominance of vertical burrows 
(Arenicolites, Diplocraterion and Skolithos) in the Sko-
lithos assemblage belonging to the Skolithos Ichno-
facies (Seilacher, 1967) and indicating moderate 
to high-energy conditions in the middle shoreface 
(Pemberton et al., 2001).

The deposits of HST-II show a shallowing-up-
ward sequence of lower- and middle shoreface en-
vironments, indicating a sea level drop during the 
Callovian. The intercalated sequence of mudstone 
and allochemic sandstone facies marks the onset of 
progradation, while the thick, cross-bedded, white 
and ferruginous sandstone facies and the associated 
trace fossils mark a drop in base-level during the 
Callovian. The HST-II represents a major progra-
dation of the shoreline in the Chorar Island area 
during the Callovian, which does not coincide with 
the global sea level curve (Haq et al., 1988; Haq & 
Al-Qahtani, 2005). The development of a HST due to 
sediment supply that outpaced the accommodation 
space in a rift environment has been observed in 
the Gainsborough Trough (UK) in upper Namurian 
strata (Church & Gawthorpe, 1997). Hence, HST-II 
indicates a continuous creation of accommodation 
space within a synrift basin margin compensated 
by sediment supply outpacing the accommodation 
space and resulting in an aggrading thick clastic se-
quence (Fig. 5).

5.	 Conclusions

Our sedimentological and ichnological analysis of 
Chorar Island, the easternmost part of the Kachchh 
Basin which characteristically comprises shal-
low-marine synrift sediments of Middle Jurassic 
age, allows the following conclusions to be drawn.

Chorar Island (Kachchh Basin) comprises a 
~109-m-thick Bajocian–Callovian succession that 
is characterised by bioturbated clastic, non-clastic 

and mixed siliciclastic-carbonate sedimentary rocks 
of shoreface-offshore environments. Sixteen ichno-
genera document five ichnoassemblages that are 
represented by the Skolithos (Skolithos assemblage) 
and Cruziana (Gyrochorte, Hillichnus, Rhizocoralli-
um and Thalassinoides assemblages) ichnofacies. 
Sedimentological and ichnological evidence has 
revealed two genetic cycles: TST-I and HST-II, sep-
arated by Flooding Surface (FS).

The Middle Jurassic synrift basin margin succes-
sion of Chorar Island displays two Genetic Cycles; 
TST-I marks a sea level rise during the Bajocian-Ba-
thonian that matches the short-term global eustatic 
sea level curve, while HST-II (Callovian) represents 
a deviation from the global sea level curve due to 
abundant sediment supply that outpaced accom-
modation space.
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