Effects of environmental and anthropogenic determinants on changes in groundwater levels in selected peat bogs of Slowinski National Park, northern Poland

Open access

Abstract

The present study focuses on two Baltic-type peat bogs in Slowinski National Park, namely that at Żarnowskie and at Kluki, located in the Lake Łebsko catchment and both characterised by a centrally located dome with a very marshy fringe area featuring an emerging marshy coniferous forest (Vaccinio uliginosi-Pinetum). The Żarnowskie bog is under active protection. A total of 24 flow barriers were installed in drainage ditches during the years 2006 and 2007. The purpose of these barriers was to put a halt to water outflow. In addition, 30 hectares of young pine forest were cleared in order to decrease loss of water via evapotranspiration.

Kluki peat bog is only partially protected by Polish law. The lack of efforts to prevent outflow via the canal is due to the fact that the canal is utilised to drain meadows in the vicinity of the village of Łokciowe outside of the national park. Peat formation no longer occurs in this peat bog. The hydrological condition of the bog is catastrophic as a result of its main canal, referred to as Canal C9, which is 2.5 to 3.0 m deep and 10 m wide in places.

Both peat bogs are monitored for fluctuations in groundwater. Research has shown that changes in water levels fluctuate based on season of the year and geographical location, which is illustrated quite well using the two studied peat bogs.

The water retention rate of the Żarnowskie peat bog may be considered fairly high and is likely to improve due to protective measures enabled by Polish environmental laws. The water retention rate of the bog is consistently improving thanks to these measures, fluctuations in water level are small and the water level does not drop under 0.5 m below ground level even under extreme hydrometeorological conditions. This yields optimum conditions for renewed peat formation in this area. One potential threat is the Krakulice peat extraction facility, which is located in the southern part of the bog close to the boundary with the national park.

References

  • Borówka, R.K. & Rotnicki, K., 1995. Problemy dolnego i środkowego czwartorzędu Niziny Gardzieńsko-Łebskiej [The problems of the lower and middle Quaternary of the Gardnieńsko-Łebska Lowland]. [In:] W. Florek (Ed.): Geologia i geomorfologia pobrzeża południowego Bałtyku 2 [Geology and Geomorphology of the South Baltic Coast, 2]. Słupsk, 53–70.

  • Braun, M. & Chlost, I., 2008, Funkcjonowanie systemu torfowiskowego Żarnowska [The functioning system of peat bog Zarnowska]. [In:] E. Jekatierynczuk-Rudczyk, M. Stepaniuk & M. Mazur (Eds): Współczesne problemy geografii polskiej – geografia fizyczna [Contemporary problems of Polish geography – physical geography]. Dokumentacja Geograficzna IGiPZ PAN, Warszawa, 122–128.

  • Chełmicki, W., 1991. Reżim płytkich wód podziemnych w Polsce [The regime of shallow groundwater in Poland]. Rozprawy Habilitacyjne, Wyd. UJ, Kraków, 218, 136 pp.

  • Chlost, I. 2012. Geograficzne uwarunkowania stosunków wodnych Niziny Gardneńsko-Łebskiej [Geographical conditions of water relations of the Gardnieńsko-Łebska Lowland]. Rozprawa doktorska, Katedra Hydrologii UG [PhD Dissertation, Department of Hydrology, University of Gdańsk, typescript], Gdańsk, 233 pp.

  • Chlost, I. & Sikora, M., 2015. The impact of anthropogenic pressure on the change of water relations in Gardno-Łeba Lowland, Quaestiones Geographicae 34, 17–31.

  • Cieśliński, R., Chlost, I., Olszewska, A. & Sikora, M., 2014. Influence of hydrological conditions of the state of selected plant habitats in the Slowiński National Park (northern Poland). [In:] Gâştescu, P., Marszelewski, W. & Bretcan, P. (Eds): Water resources and wetlands, Transversal Publishing House, Targoviste, 353–360.

  • Dale, W.H., 1997. The relationship between land-use change and climate change. Ecological Applications, 7, 753–769.

  • Drwal, J., 1968. O pierwszym poziomie wód gruntowych w strefie brzegowej południowego Bałtyku (na odcinku jezioro Gardno – jezioro Bukowo) [The first level of groundwater in the coastal zone of southern Baltic Sea (section Gardno Lake - Lake Bukowo)]. Zeszyty Geograficzne WSP w Gdańsku 9, 245–255.

  • Herbichowa, M., Pawlaczyk, P. & Stańko, R., 2007. Ochrona wysokich torfowisk bałtyckich na Pomorzu [Protection of Baltic raised bogs in Pomerania]. Wydawnictwo Klubu Przyrodników, Świebodzin, 147 pp.

  • Ilnicki, P., 2002. Peatlands and peat. Agricultural Academy Press, Poznań, 606 p. (in Polish).

  • Jahangir, M.M.R., Johnston, P., Addy, K., Khalil, M.I., Groffman, P.M. & Richards, K.G., 2013. Quantification of in situ denitrification rates in groundwater below and arable and a grassland system. Water, Air, and Soil Pollution, 224, 1693.

  • Jasnowski, M., 1978. Znaczenie torfowisk w Polsce i ich ochrona [The importance of peatlands in Poland and their protection]. [In:] W. Michajłowa & K. Zabierowski (Eds): Ochrona i kształt środowiska przyrodniczego [Protection and shape of the natural environment]. Zakład Ochrony Przyrody PAN, PWN Warszawa–Kraków, 279–310.

  • Jasnowski, M., 1990. Torfowiska województwa słupskiego. Stan, zasoby, znaczenie, zasady gospodarowania, ochrona [Bogs province of Slupsk. State resources, importance, principles of management, protection]. Akademia Rolnicza w Szczecinie, Wojewódzkie Biuro Planowania Przestrzennego w Słupsku, Szczecin 84 pp.

  • Kleinebecker, T., Hölzel, N. & Vogel, A., 2008. South Patagonian ombrotrophic bog vegetation reflects biogeochemical gradients at the landscape level. Journal of Vegetation Science 19, 151–160.

  • Kath, J., Le Brocque, A. & Miller, C., 2010. Eco-hydrology of dynamic wetlands in an Australian agricultural landscape: a whole of system approach for understanding climate change impacts. BALWOIS 2010: Water Observation and Information System for Decision Support, Ohrid, Macedonia, 1–13.

  • Kleinebecker, T., Hölzel, N. & Vogel, A., 2010. Patterns and gradients of diversity in South Patagonian ombrotrophic peat bogs. Austral Ecology 35, 1–12.

  • Komulainen, V.-M., Tuittila, E.-S., Vasander, H. & Lainne, J., 1999. Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO2 balance. Journal of Applied Ecology 36, 634–648.

  • Kozerski, B. & Sadurski, A., 1985. Klasyfikacja hydrogeologiczna strefy brzegowej południowego Bałtyku [Hydrogeological classification of coastal zone of the southern Baltic Sea]. [In:] B. Rosa & K. Wypych (Eds): Z problematyki badawczej polskiego wybrzeża [With research issues of the Polish coast], Peribalticum III, GTN, PAN, 27–36.

  • Kreczko, M. (Ed.), 2000. Mapa Hydrogeologiczna Polski w skali 1:50000, Arkusz N 33-47-D, Kluki [Polish Hydrogeological Map 1: 50,000, sheet N 33-47-D, Kluki]. Państwowy Instytut Geologiczny, Warszawa.

  • Leider, A., Hinrichs, K.U., Schefuß, E. & Versteegh, G.J.M., 2013. Distribution and stable isotopes of plant wax derived n-alkanes in lacustrine, fluvial and marine surface sediments along an Eastern Italian transect and their potential to reconstruct the hydrological cycle. Geochimica et Cosmochimica Acta 117, 16–32.

  • Lidzbarski, M., 2004. Operat hydrogeologiczny. Plan Ochrony Słowińskiego Parku Narodowego [The hydrological frame. Protection plan of the Slowinski National Park]. Smołdzino.

  • McPhillips, L.E., Groffman, P.M., Goodale, Ch.L. & Walter, M.T., 2015. Hydrologic and biogeochemical drivers of riparian denitrification in an agricultural watershed. Water, Air, & Soil Pollution 226, 169.

  • Mitsch, W.J. & Day, Jr.J.W., 2006. Restoration of wetlands in the Mississippi–Ohio–Missouri (MOM) River Basin: Experience and needed research. Ecological Engineering 26, 55–69.

  • Muller, I., Buisson, E., Mouronval, J.B. & Mesléard, F., 2013. Temporary wetland restoration after rice cultivation: is soil transfer required for aquatic plant colonization? Knowledge and Management of Aquatic Ecosystems 411, 0301–0317.

  • Oertli, B., Biggs, J., Céréghino, R., Grillas, P., Joly, P. & Lachavanne, J.B., 2005. Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation: Marine and Freshwater Ecosystems 15, 535–540.

  • Rijsberman, F.R., 2006. Water scarcity: Fact or fiction? Agricultural Water Management 80, 5–22.

  • Rotnicki, K., 2009. Identyfikacja, wiek i przyczyny holoceńskich ingresji i regresji Bałtyku na polskim wybrzeżu środkowym [Identification, age and cause of Holocene ingression and regression of the central Polish Baltic Sea coast] Slowinski National Park, Smołdzino, 100 pp.

  • Rouse, W.R., 2002. The energy and water balance of high-latitude wetlands: controls and extrapolation. Global Change Biology 6, 59–68.

  • Tiner, R.W., 2003. Geographically isolated wetlands of the United States. Wetlands 23, 494–516.

  • Tobolski, K., 1972. Wiek i geneza wydm przy południowo-wschodnim brzegu jeziora Łebsko [Age and genesis of dunes at the south-eastern shore of Lake Łebsko]. Badania Fizjograficzne nad Polską zachodnią 25 B, 135–146.

  • Tobolski, K., 1975. Studium palinologiczne gleb kopalnych na Mierzei Łebskiej w Słowińskim Parku Narodowym [Palynological study of the fossil soils on the Spit Łebska in the Slowinski National Park]. PTPN, Prace Komisji Biologicznej 41, 1–76.

  • Tobolski, K., 1989. Holoceńskie transgresje Bałtyku w świetle badań paleoekologicznych Niziny Gardnieńsko–Łebskiej [Holocene transgression of the Baltic Sea in the light of palaeoecological of the Gardnieńsko-Łebska Plain]. Studia i Materiały Oceanologiczne 56, Geologia Morza (4), 257–265.

  • Tobolski, K., Mocek, A. & Dzięciołowski, W., 1997. Gleby Słowińskiego Parku Narodowego w świetle historii roślinności i podłoża [The soils of the Slowinski National Park, in the light of the history of vegetation and substrate]. Domini, Bydgoszcz – Poznań, 183 pp.

  • Zedler, J.B., 2003. Wetlands at your service: reducing impacts of agriculture at the watershed scale. Frontiers in Ecology and the Environment 1, 65–72.

Geologos

The Journal of Adam Mickiewicz University

Journal Information


CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805


Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 16
PDF Downloads 5 5 2