Sedimentary fractions of phosphorus before and after drainage of an urban water body (Maltański Reservoir, Poland)

Open access

Abstract

Urban reservoirs can receive high loads of chemicals, including persistent contaminants and eutrophication-promoting nutrients. To maintain their economic and recreational use, implementation of various restoration methods is often required. The Maltański Reservoir (Poland, Europe), a small, shallow and dammed urban water body, undergoes complete draining every four years as part of its restoration procedure. Here, we investigated the phosphorus (P) content and its fractions just before the reservoir was drained and after it had been completely filled with water again. As demonstrated, the highest accumulation of P occurred at sites through which the main water flow is directed. Calcium-bound and residual P constituted the largest proportion of P fractions. A shift in P fractions after the reservoir was drained and sediments were left without water for at least 4 months was observed. A decrease in phytoplankton utilized NH4Cl-P, Fe-P and NaOH-P fractions was found and followed a simultaneous increase in nearly biologically inaccessible HCl-P and practically biologically inactive residual P fractions. Our study demonstrates that complete drainage of the Maltański Reservoir may additionally decrease the risk of internal P loading through shifts in its fractions.

Azizuddin A.D., Ali N.A.M., Tay K.S., Bin Abas M.R., Simoneit B.R.T., 2014, Characterization and sources of extractable organic matter from sediment cores of an urban lake (Tasik Perdana), Kuala Lumpur, Malaysia, Environ. Earth Sci. 71(10): 4363-4377.

Barałkiewicz D., Chudzińska M., Szpakowska B., Swierk D., Gołdyn R., Dondajewska R., 2014, Storm water contamination and its effect on the quality of urban surface waters, Environ. Monit. Assess. 186(10): 6789-6803.

Boström B., Jansson M., Forsberg C., 1982, Phosphorus release from lake sediments, Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5-59.

Bryhn A.C., 2009, Sustainable phosphorus loadings from effective and cost-effective phosphorus management around the Baltic Sea, PLoS ONE 4: e5417.

Choe J.E., Bang K.W., Lee J.H., 2002, Characterization of surface runoff in urban areas, Water Sci. Technol. 45(9): 249-254.

Conley D.J., Paerl H.W., Howarth R.W., Boesch D.F., Seitzinger S.P., Havens K.E., Lancelot C., Likens G.E., 2009, Controlling eutrophication: nitrogen and phosphorus, Science 323: 1014-1015.

Cooke D.G., Welch E.B., Peterson S., Nichols S.A., 2005, Restoration and Management of Lakes and Reservoirs, Third Edition, CRC Press, Boca Raton, pp. 591.

Dorich R.A., Nelson D.W., Sommers L.E., 1984, Availability of phosphorus to algae from eroded soil fractions, Agr. Ecosyst. Environ. 11(3): 253-264.

Fabre A., Qotbi A., Dauta A., Baldy V., 1996, Relation between algal available phosphate in the sediments of the River Garonne and chemically-determined phosphate fractions, Hydrobiologia 335(1): 43-48.

Golterman H.L., 2001, Fractionation and bioavailability of phosphates in lacustrine sediments: a review, Limnetica 20(1):15-29.

Gramowska H., Krzyzaniak I., Baralkiewicz D., Goldyn R., 2010, Environmental applications of ICP-MS for simultaneous determination of trace elements and statistical data analysis, Environ. Monit. Assess. 160: 479-490.

Granéli W., 1999, Internal phosphorus loading in Lake Ringsjön, Hydrobiologia 404:19-26.

Håkanson L., Jansson M., 1983, Principles of lake sedimentology. Springer-Verlag, Berlin-Heidelberg-New York- Tokyo, pp. 316.

Huang L., Fu L., Jin C., Gielen G., Lin X., Want H., Zhang Y., 2011, Effect of temperature on phosphorus sorption to sediments from shallow eutrophic lakes, Ecol. Eng. 37(10): 1515-1522.

Hupfer M., Gachter R., Giovanoli R., 1995, Transformation of phosphorus species in settling seston and during early sediment diagenesis, Aquat. Sci. 57(4): 305-324.

Jensen H.S., Andersen F.O., 1992, Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes, Limnol. Oceanogr. 37(3): 577-589.

Jeppesen E., Jensen J.P., Sondergaard M., Lauridsen T., Landkildehus F., 2000, Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient, Freshwater Biol. 45(2): 201-213.

Jin X., Wang S., Pang Y., Chang Wu F., 2006, Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China, Environ. Pollut. 139(2): 288-295.

Kaiserli A., Voutsa D., Samara C., 2002, Phosphorus fractionation in lake sediments-Lakes Volvi and Koronia N. Greece, Chemosphere 46(8): 1147-1155.

Klimaszyk P., Piotrowicz R., Rzymski, P., 2015, Changes in the ecosystem of shallow softwater lake induced by the Great Cormorant roosting colony, J. Limnol. 74(1): 114-122.

Klimaszyk P., Rzymski P., 2013, Catchment vegetation can trigger lake dystrophy through changes in runoff water quality, Annal. Limnol. - Int. J. Limnol. 49(3):191-197.

Kobos J., Błaszczyk A., Hohlfeld N., Toruńska-Sitarz A., Krakowiak A., Hebel A., Sutryk K., Grabowska M., Toporowska M., Kokociński M., Messyasz B., Rybak A., Napiórkowska-Krzebietke A., Nawrocka L., Pełechata A., Budzyńska A., Zagajewski P., Mazur-Marzec H., 2013, Cyanobacteria and cyanotoxins in Polish freshwater bodies, Oceanol. Hydrobiol. Stud. 42(4): 358-378.

Kowalczewska-Madura K., 2003, Mass balance calculations of nitrogen and phosphorus for Swarzędzkie Lake, Limnol. Rev.3: 113-118.

Kowalczewska-Madura K., Dondajewska R., Gołdyn R., 2010, Total phosphorus and organic matter content in bottom sediments of lake under restoration measures with iron treatment, Limnol. Rev. 10(3-4): 139-145.

Kowalczewska-Madura K., Gołdyn R., 2006, Anthropogenic changes in water quality in the Swarzędzkie Lake (West Poland), Limnol. Rev. 6: 147-154.

Lewis W.M., Wurtsbaugh W.A., Paerl H.W., 2011, Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters, Environ. Sci. Technol. 45(24): 10300-10305.

McLaughlin J.R., Ryden J.C., Syers J.K., 1981, Sorption of inorganic phosphate by iron and aluminium containing components, J. Soil Sci. 32(3): 365-377.

Moss B., Barker T., Stephen D., Williams A. E., Balayla D., Beklioglu M., Carvalho L., 2005, Consequences of reduced nutrient loading on a lake system in a lowland catchment: deviations from the norm?, Freshwater Biol. 50912): 1687-1705.

O’Neil J.M., Davis T.W., Burford M.A., Gobler C.J., 2012, The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change, Harmful Algae 14: 313-334.

Psenner R., Bostrom B., Dinka M., Pettersson K., Pucsko R., Sager M., 1988, Fractionation of phosphorus in suspended matter and sediment, Arch. Hydrobiol. Beih. Ergebn. Limnol.30: 98-112.

Ribeiro, D.C., Martins, G., Nogueira, R., Cruz, J.V., Brito A.G., 2008, Phosphorus fractionation in volcanic lake sediments (Azores - Portugal), Chemosphere 70(7): 1256-1263.

Rybak A., Messyasz B., Łęska B., 2012, Freshwater Ulva (Chlorophyta) as a bioaccumulator of selected heavy metals (Cd, Ni and Pb) and alkaline earth metals (Ca and Mg), Chemosphere 89(9):1066-1076.

Rydin E., 2000, Potentially mobile phosphorus in Lake Erken sediment, Water Res. 34(7): 2037-2042.

Rzymski P., Klimaszyk P., Niedzielski P., Poniedziałek B., 2013, Metal accumulation in sediments and biota in Malta Reservoir (Poland), Limnol. Rev. 13(3): 163-169.

Rzymski P., Niedzielski P., Klimaszyk P., Poniedziałek B., 2014, Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir, Environ. Monit. Assess. 186(5): 3199-3212.

Scharf W., 1999. Restoration of the highly eutrophic lingese reservoir, Hydrobiologia 416: 85-96.

Smal H., Ligęza S., Baran S., Wójcikowska-Kapusta A., Obroślak R., 2013, Nitrogen and phosphorus in bottom sediments of two small dam reservoirs, Pol. J. Environ. Stud. 22(5): 179-189.

Sobczyński T., Joniak T., 2009, Differences in composition and proportion of phosphorus fractions in bottom sediments of Lake Góreckie (Wielkopolska National Park), Environ. Protect. Eng. 35(2): 89-95.

Sobczyński T., Joniak T., 2009, Vertical changeability of physical- chemical features of bottom sediments in three lakes, in aspect type of water mixes and intensity of human impact, Pol J. Environ. Stud. 18(6): 1093-1099.

Søndergaard M., Jensen J.P., Jeppesen E., 2001, Retention and internal loading of phosphorus in shallow, eutrophic lakes, ScientificWorldJournal 23 :427-442.

Søndergaard M., Jensen J.P., Jeppesen E., 2003, Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506-509(1): 135-145.

Vincent A.G., Sundqvist M.K., Wardle D.A., Giesler R., 2014, Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape, PLoS One. 9: e92942.

Zhou A., Tang H., Wang D., 2005, Phosphorus adsorption on natural sediments: modeling and effects of pH and sediment composition, Water Res. 39(7): 1245-1254.

Limnological Review

The Journal of Polish Limnological Society

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 138 10
PDF Downloads 56 56 4