Exposure tests of copper foils in a slurries of different bentonites

Open access


The goal of the study was to compare corrosion performance of copper in different bentonite slurries. Copper coil samples were exposed in a slurries of bentonites BaM, Rokle, B75, G2M, Voltex, Sabenil. The test was carried out under anaerobic conditions in glovebox at laboratory temperature for duration of one to four months. Samples were evaluated by means of X-ray diffraction and mass loss. Liquid parts of slurries were analysed by ion chromatography and pH meter. The resistance of copper in all studied bentonites was very high. Corrosion rates were in order of tenths of micrometers per year. No trend between pore solution composition and corrosion rate or composition of corrosion products was observed.

1. Björkbacka, Å., et al., Radiation induced corrosion of copper for spent nuclear fuel storage. Radiation Physics and Chemistry 2013, 92, 80-86.

2. Björkbacka, Å., et al., Role of the Oxide Layer in Radiation-Induced Corrosion of Copper in Anoxic Water. The Journal of Physical Chemistry C 2016, 120 (21), 11450-11455.

3. Bjorkbacka, A., et al., Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides. Dalton Trans 2015, 44 (36), 16045-51.

4. King, F.; Kolar, M., Lifetime Predictions for Nuclear Waste Disposal Containers. Corrosion 2019 (available http://corrosionjournal.org/doi/pdf/10.5006/2994).

5. Rosborg, B., et al., Corrosion rate of pure copper in an oxic bentonite/saline groundwater environment. Corrosion Engineering, Science and Technology 2011, 46 (2), 148-152.

6. Hall, D. S.; Keech, P. G., An overview of the Canadian corrosion program for the long-term management of nuclear waste. Corrosion Engineering, Science and Technology 2017, 52 (S1), 2-5.

7. Kremer, E. P., Durability of the Canadian used fuel container. Corrosion Engineering, Science and Technology 2017, 52 (sup1), 173-177.

8. Standish, T., et al., Corrosion of Copper-Coated Steel High Level Nuclear Waste Containers under Permanent Disposal Conditions. Electrochimica Acta 2016, 211, 331-342.

9. Standish, T., et al., Synchrotron-Based Micro-CT Investigation of Oxic Corrosion of Copper-Coated Carbon Steel for Potential Use in a Deep Geological Repository for Used Nuclear Fuel. Geosciences 2018, 8 (10), 360.

10. Standish, T. E., et al., Galvanic corrosion of copper-coated carbon steel for used nuclear fuel containers. Corrosion Engineering, Science and Technology 2017, 1-5.

11. Stoulil, J., et al., Corrosion resistance of new powder metallurgy boron-containing stainless steel in the nuclear repository environment. Materials and Corrosion 2015, 66 (4), 342-346.

12. Stoulil, J., et al., Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment. Journal of Nuclear Materials 2013, 443 (1-3), 20-25.

13. Stoulil, J., et al., Hydrogen embrittlement of duplex stainless steel 2205 and TiPd alloy in a synthetic bentonite pore water. Corrosion 2019 (available http://corrosionjournal.org/doi/pdf/10.5006/2852).

14. Stoulil, J., et al., 1D simulation of canister galvanic corrosion in saturated compacted bentonite. Materials and Corrosion 2018, 69 (9), 1163-1169.

15. Novikova, D., et al., Korozní chování oceli ČSN 422707.9 v zahuštěné syntetické pórové vodě bentonitu. Koroze a ochrana materiálu 2016, 60 (3), 68-73.

16. Stoulil, J., et al., Influence of heat transfer on corrosion behaviour of materials for radioactive waste canisters in synthetic bentonite pore water and bentonite suspension. Koroze a ochrana materiálu 2016, 60 (5), 139-143.

17. Stoulil, J.; Dobrev, D., Microbial corrosion of metallic materials in a deep nuclear-waste repository. Koroze a ochrana materiálu 2016, 60 (2), 60-67.

18. Stoulil, J., et al., Korozní chování mědi v prostředí vlhkého bentonitu Rokle B75. Koroze a ochrana materiálu 2014, 58 (2), 43-47.

Koroze a ochrana materialu

The Journal of Association of Corrosion Engineers (Asociace korozních inženýru)

Journal Information

CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 4
PDF Downloads 95 95 5