Degradace Cr₃C₂–NiCr povlaku připraveného technikou HVOF

Degradation of Cr₃C₂–NiCr coating prepared by the HVOF technique

Rapouch J.

Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha E-mail: rapouchj@vscht.cz

Během expozice vřetena z vysokochromové oceli X22Cr-MoV12-1 s HVOF povlakem na bázi Cr_3C_2 -NiCr v prostředí přehřáté páry došlo po několika hodinách provozu k degradaci tohoto povlaku. V této studii je hodnocena úroveň poškození povlaku za pomoci analýzy chemického a fázového složení na povrchu i v řezu vrstvy. V degradované i nedegradované vrstvě byly detekovány fáze Ni-Cr, Cr_3C_2 a Cr_2O_3 . Během expozice došlo k úbytku tloušťky vrstvy o jeden řád. Pravděpodobnou příčinou degradace vrstvy je oxidace v prostředí páry, negativní roli mohly hrát i objemné částice na rozhraní ocel/povlak.

ÚVOD

Technika HVOF (High Velocity Oxygen Fuel) je způsob povlakování, při kterém je materiál ve formě prášku pomocí nosného plynu vstřikován do spalovací komory. Zde dochází k natavení některých složek a výraznému urychlení pohybu směrem k povlakované součásti. HVOF povlaky na bázi Cr₃C₂-NiCr se používají především pro zvýšení tvrdosti a otěruvzdornosti za zvýšených teplot, kdy vykazují velmi vysokou strukturní stabilitu a odolnost proti oxidaci [1]. Zatímco matrice NiCr zajišťuje povlaku dostatečnou korozní odolnost, jeho otěruvzdornost je dána primárně karbidickými částicemi. Povlak Cr₃C₂-NiCr je ve standardním stavu tvořen nanokrystalickou až amorfní matricí NiCr, karbidy, nízkým obsahem Cr₂O₃ (vzniklých přímou reakcí chromu s kyslíkem během HVOF procesu), póry a často také malými trhlinami [2]. Nanesený HVOF povlak má vysokou hustotu a porozitu pod úrovní 1 %. Kromě karbidu Cr₃C₂ bývají v povlaku přítomné také karbidy Cr₇C₃ a Cr₂₃C₆ vzniklé transformací původního Cr₃C₂. Velkou výhodou těchto povlaků je podobný koeficient roztažnosti železa a karbidu Cr₃C₂ [3, 4].

Během provozu za zvýšených teplot dochází k oxidaci a v povlaku se tvoří oxid Cr_2O_3 . Předpokládá se,

After a few hours of operation, a Cr_3C_2 -NiCr-based HVOF coating on a spindle made of high-chromium steel X22Cr-MoV12-1 degraded when exposed to overheated steam. The study evaluates the level of coating damage by analysing chemical and phase composition on the surface and on the cross-section of the layer. Ni–Cr, Cr_3C_2 and Cr_2O_3 phases were detected in both degraded and non-degraded layers. During the exposure, the layer thickness thinned by an order of magnitude. The layer degradation was probably induced by oxidation in a steam environment; voluminous particles on the steel/coating interface might have played a negative role.

že Cr₂O₃ částečně zpomaluje oxidaci podkladového materiálu blokováním přístupu reaktivních složek prostředí směrem k podkladu [5]. Oxid Cr₂O₃ vzniká jak oxidací karbidu Cr₃C₂, tak i chromu z matrice povlaku. Přednostní oblastí pro difúzi kyslíku a následnou vnitřní oxidaci uvnitř povlaku jsou fázová rozhraní Cr₃C₂/NiCr [6]. K vytvoření ochranné vrstvy oxidu chromitého je třeba, aby matriční slitina NiCr obsahovala minimálně 10 % Cr. Na slitině NiCr dochází během oxidace za zvýšených teplot nejdříve ke tvorbě vrstvy NiO, pod níž se postupně vytváří vrstva Cr2O3. Reakcí těchto dvou oxidů navíc vzniká spinel NiCr2O4. Při vysokých koncentracích chromu v matrici je oxidická vrstva tvořena pouze Cr₂O₃ [4, 7]. V průběhu oxidace vznikají ve vrstvě pnutí, a to tahová vlivem transformace Cr3C2 na karbidy s vyšší hustotou (Cr₇C₃, Cr₂₃C₆), i tlaková způsobená objemovou expanzí karbidu Cr₃C₂ na oxid Cr₂O₃ (objemový poměr vzniklého Cr₂O₃ ku spotřebovanému Cr₃C₂ je asi 1,6). K celkovému pnutí v systému zároveň přispívá fakt, že oxid chromitý vzniklý oxidací karbidu Cr₃C₂ a matrice NiCr má vzhledem k odlišnému mechanismu růstu rozdílnou strukturu [6].

V literatuře nebyly zjištěny žádné negativní účinky vysokoteplotní oxidace (bez přítomnosti vodní páry) na kompaktnost a přilnavost HVOF vrstvy.

DOI: 10.2478/kom-2013-0009

V prostředí vodní páry (600-700 °C) HVOF nástřik obsahující pouze slitinu 80Ni-20Cr nanesený na povrch oceli 9Cr-Mo1 nevykazuje výraznější degradaci. Po expozici při 750 °C po dobu 1000 h byla pozorována difúze železa směrem do povlaku a opačná difúze niklu z povlaku směrem do podkladového materiálu, přičemž oba procesy probíhají přibližně stejnou rychlostí [8]. K poškození povlaku v prostředí vodní páry může navíc přispět i přítomnost grafitu a mazacích olejů [9].

EXPERIMENT

Zkoumaným materiálem byla ocel X22CrMoV12-1 s HVOF nástřikem Ni75Cr25-Cr₃C₂. Materiál byl provozně exponován v prostředí přehřáté páry (580 °C / 15 MPa) po dobu 21 hodin, během které došlo k rozpadu původního povlaku. V rámci experimentů byl hodnocen výřez vřetene opatřeného nástřikem po provozní expozici. Vřeteno vykazovalo různé stavy povrchu (poškozený/nepoškozený). K hodnocení bylo vřeteno rozděleno na 3 části (Obr. 1):

- 1. Základní materiál bez povlaku (ZM),
- 2. HVOF vrstva krytá vodicím pouzdrem s nepoškozeným povrchem (N1),
- 3. HVOF vrstva před vodicím pouzdrem (tzn. nekrytá) s poškozeným povrchem (N2).

Obr. 1. Dodané vřeteno Fig. 1. Spindle in as received state

Povrchy a metalografické výbrusy v řezu vrstvy jednotlivých vzorků byly pozorovány pomocí skenovacího elektronového mikroskopu (SEM) Tescan Vega 3 vybaveného EDS analyzátorem pro chemickou analýzu.

Kromě pevných vzorků byly analyzovány i práškové vzorky seškrabané z povrchu vřetene nebo odebrané z vodicího pouzdra (pravděpodobně odpadlé z povrchu

Koroze a ochrana materiálu 57(3) 82-86 (2013)

vřetene v průběhu expozice). Práškové vzorky byly analyzovány metodou rentgenové fluorescenční analýzy (RFA) pro zjištění prvkového složení a rentgenové difrakční analýzy (RDA) pro detekci přítomných fází.

VÝSLEDKY

Práškové vzorky

Ve všech práškových vzorcích degradovaného nástřiku byly pomocí RDA detekovány fáze čistého Ni (resp. směsi Ni-Cr), karbidu Cr_3C_2 a oxidů Cr_2O_3 a Fe_2O_3 vzniklých pravděpodobně oxidací nástřiku, resp. podkladového materiálu (Tab. 1). Oxidy železa se mohly na povrch dostat také nanesením z jiné části provozního okruhu. U vzorků nánosů, které samovolně odpadly z povrchu (nalezeny v krytu kuželky), nebyla zjištěna přítomnost karbidických částic, nejspíše tak došlo k jejich úplné oxidaci.

Tab. 1. Fázové složení práškových vzorků odebraných z vřetene [hm. %] / *Phase composition of powder samples taken from spindle* [wt. %]

Místo odběm	Fáze				
Iviisto ouberu	Ni (Ni-Cr)	Cr ₃ C ₂	Cr ₂ O ₃	Fe ₂ O ₃	
N1	31	34	34	-	
N2	34	20	37	9	
odpadlé z povrchu	37	_	49	14	

Povrch vřetene

Povrch podkladové chromové oceli (ZM) byl pokryt vrstvou magnetitu (zjištěno pomocí RDA). Kromě železa, kyslíku a chromu byly na povrchu detekovány i obsahy molybdenu a vanadu.

Povrch nástřiku s nepoškozeným povrchem (N1) byl tvořen světlejšími a tmavšími oblastmi (Obr. 2a). Na povrchu byla detekována směs chromu, niklu a kyslíku. Z hlediska fázového složení byl povrchu tvořen fázemi Ni–Cr, Cr_2O_3 a Cr_3C_2 zastoupených zhruba ve stejných poměrech. Jiné karbidy (Cr_7C_3 , $Cr_{23}C_6$) se na povrchu buď nevyskytovaly, nebo byl jejich obsah pod mezí detekce.

Povrch degradovaného nástřiku (N2) byl také tvořen světlými a tmavými místy (Obr. 2b). Z hlediska prvkového zastoupení se tyto oblasti výrazně neliší a jsou tvořeny především chromem, niklem a kyslíkem. Metoda RDA na povrchu detekovala pouze fáze Cr_2O_3 a Cr–Ni.

Degradace Cr₃C₂-NiCr povlaku připraveného technikou HVOF

Rapouch J.

Obr. 2. Povrch vzorků, a) N1 (pod pouzdrem), b) N2 (mimo pouzdro), SEM v zobrazení sekundárních elektronů Fig. 2. Surface of samples, a) N1 (under bushing), b) N2 (out of bushing), SEM in secondary electrons imaging

a) celkový pohled

b) detail ze středu vrstvy

Obr. 3. Řez HVOF vrstvou vzorku N1 (pod pouzdrem), a) celkový pohled, b) detail ze středu vrstvy, SEM v zobrazení BSE Fig. 3. Cross-section of HVOF layer of specimen N1 (under bushing), a) whole layer, b) detail from middle of the layer, SEM in backscattered electrons imaging

Řez HVOF vrstvou

Na Obr. 3a je ukázán řez HVOF vrstvy s neporušeným povrchem v zobrazení odražených elektronů (BSE). Tloušťka vrstvy byla určena metalograficky a pohybovala se mezi 250 a 280 µm. Na rozhraní mezi podkladovým materiálem a vrstvou byla pozorována přítomnost velkých částic, v jednom případě došlo dokonce ke tvorbě trhlin vycházejících z této částice. Částice na rozhraní ocel/vrstva neodpovídá složením žádné z očekávaných fází a je tvořena především hliníkem a kyslíkem se zvýšenými obsahy vápníku, hořčíku a titanu. Může jít o částice Al_2O_3 ukotvené na povrchu v průběhu tryskání před samotným nástřikem. Na Obr. 3b je zobrazen detail vrstvy a v Tab. 2 chemická složení jednotlivých oblastí. Je zřejmé, že nejsvětlejší oblast (C) náleží matrici nástřiku (Ni-Cr), tmavší (B) částicím karbidu chromu (uhlík nebyl do chemického složení započítán) a tmavě šedé oblasti (A) odpovídají oxidům chromu. Tloušťka porušené vrstvy mimo pouzdro byla významně menší a pohybovala se mezi 25 a 30 μ m (Obr. 4a, v detailu na 4b). Vrstva byla opět tvořena světlými místy fáze Ni–Cr, tmavšími částicemi Cr₃C₂ a tmavými oxidy chromu. Oproti vzorku N1 bylo ve vrstvě výrazněji zastoupeno železo. Na rozhraní ocel/nástřik byly opět detekovány částice s vysokým obsahem hliníku a křemíku.

a) celkový pohled

b) detail ze středu vrstvy

Obr. 4. Řez HVOF vrstvou vzorku N2 (mimo pouzdro), a) celkový pohled b) detail ze středu vrstvy, SEM v zobrazení BSE *Fig. 4. Cross-section of HVOF layer of specimen N2 (out of bushing), a) whole layer, b) detail from middle of the layer, SEM in backscattered electrons imaging*

Obr. 5. Mapa prvků v řezu HVOF vrstvou vzorku N2 (mimo pouzdro), a) zobrazení BSE b) mapa železa, c) mapa kyslíku Fig. 5. Cross-section of HVOF layer of specimen N2 (out of bushing), a) BSE imaging, b) map of iron, c) map of oxygen

Tab. 2. Chemické složení vrstvy vzorku N1 (viz Obr. 4) / *Chemical composition of layer of specimen N1 (see Fig. 4)*

Místo	0	Fe	Cr	Ni	Si
A	27	_	70	1,9	0,6
В	-	0,4	98	1,9	_
C	-	-	55	45	-

Rozložení železa a kyslíku v degradované vrstvě je znázorněno na Obr. 5. Železo bylo ve vrstvě detekováno pouze na rozhraní s podkladovou ocelí, kde pravděpodobně docházelo k jeho pomalé difúzi z materiálu. Přítomnost kyslíku byla pozorována v celé vrstvě, nelze však jednoznačně říci, zda náleží oxidu vzniklému během nástřiku či až během následné expozice.

Výrazně menší tloušťka vrstvy a absence fáze Cr_3C_2 na povrchu poškozeného HVOF povlaku (N2) poukazuje na jeho degradaci vlivem oxidace, pravděpodobně za spoluúčasti vodní páry. V souladu s tímto předpokladem je i absence karbidické fáze v práškovém vzorku odpadlém z povrchu, která byla zoxidována na Cr_2O_3 .

Předpokládaným degradačním mechanismem je postupná difúze kyslíku vrstvou a přeměna karbidických částic na oxidické s vyšším objemem. Pro potvrzení tohoto předpokladu je však nutná přesná analýza lehkých prvků (uhlík, kyslík) v řezu vrstvou.

ZÁVĚR

Práškové vzorky odebrané z povrchu vřetene byly tvořeny původním nástřikem (fáze Ni-Cr a Cr_3C_2) a oxidy Cr_2O_3 a Fe_2O_3 vzniklé pravděpodobně jeho oxidací. Povrch základního materiálu X22CrMoV12-1 (bez nástřiku) byl pokryt tenkou vrstvou magnetitu. V místě degradovaného povlaku byl povrch tvořen sloučeninami na bázi chromu, niklu a kyslíku. Tloušťka vrstvy NiCr–Cr₃C₂ se u nepoškozené části pohybovala mezi 250 a 280 µm, v degradované části byla mezi 25 a 30 µm. V obou případech byla ve vrstvě analyzována místa odpovídající chemickým složením fázím Ni–Cr, Cr_3C_2 a Cr_2O_3 .

Pro hodnocení vhodnosti použití tohoto typu povlaku do podmínek přehřáté páry je nutný rozsáhlejší experimentální program.

LITERATURA

- Suegama, P. H., Espallargas, N., Guilemany, J. M., et al. Electrochemical and Structural Characterization of Heat-Treated Cr3C2–NiCr Coatings. *Journal of The Electrochemical Society* 2006, 153 (10), B434-B445.
- Guilemany, J.M., Espallargas, N., Suegama, P. H. Comparative study of Cr₃C₂-NiCr coatings obtained by HVOF and hard chromium coatings. *Corrosion Science* 2006, 48 (10), 2998-3013.
- Ji, G.-C., Li C.-J., Wang, Y.-Y. Microstructural characterization and abrasive wear performance of HVOF sprayed Cr₃C₂-NiCr coating. *Surface & Coatings Technology* 200, 2006, 6749-6757.
- 4. Mathews, S. J. *Erosion-Corrosion of Cr3C2-NiCr High Velocity Thermal Spray Coatings: Ph.D. Thesis.* The University of Auckland, 2004.
- Kaur, M., Singh, H., Prkash, S. Surface engineering analysis of detonation-gun sprayed Cr₃C₂-NiCr coating under hightemperature oxidation and oxidation-erosion environments. *Surface and Coatings Technology***2011**, 206 (2-3), 530-541.
- Matthews, S., James, B., Hyland, M. High temperature erosion-oxidation of Cr₃C₂-NiCr thermal spray coatings under simulated turbine conditions. *Corrosion Science* 2013, 70, 203–211.
- Kunioshi, C. T., Correa, O. V., Ramanathan, L. V. Erosion-Oxidation Behavior of Thermally Sprayed Ni20Cr Alloy and WC and Cr₃C₂ Cermet Coatings. *Materials Research* 2005, 8(2),125-129.
- Sundararajan, T., Kuroda, S., Itagaki, T., Abe, F. Steam Oxidation Resistance of Ni–Cr Thermal Spray Coatings on 9Cr–1Mo Steel. Part 1: 80Ni–20Cr. *ISIJ International* 2003, 43 (1), 95-103.
- Mann, B. S., Prakash, B. High temperature friction and wear characteristics of various coating materials for steam valve spindle application. *Wear* 2000, 240, 223-230.