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Abstract Vagueness is a linguistic phenomenon as well as a property of physical 
objects. Fuzzy set theory is a mathematical model of vagueness that has been used 
to define vague models of computation. The prominent model of vague computation 
is the fuzzy Turing machine. This conceptual computing device gives an idea of what 
computing under vagueness means, nevertheless, it is not the most natural model. 
Based on the properties of this and other models of vague computing, an attempt is 
made to formulate a basis for a philosophy of a theory of fuzzy computation.
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1. Introduction

Following Raymond Turner [31], who starts his entry on the Philoso-
phy of Computer Science in the Stanford Encyclopedia of Philosophy by 
quoting Stewart Shapiro [23, p. 525] in order to explain in a nutshell 
what is the philosophy of computer science, I will use the same excerpt 
from Shapiro’s paper to give a general idea of what a philosophy of 
fuzzy computation should be. More specifically, given an arbitrary field 
of study X, Shapiro notes that
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“the main purpose of a given field of study is to contrib-
ute to knowledge, the philosophy of X is, at least in part, 
a branch of epistemology. Its purpose is to provide an ac-
count of the goals, methodology, and subject matter of X.”

Before attempting to give an account of the goals and methodology 
of a theory of fuzzy computation, it is necessary to explain what is the 
subject matter of fuzzy computation. And before explaining what is 
fuzzy computation, it is absolutely necessary to explain why fuzzy com-
putation does matter. In different words, why should we consider fuzzy 
computation as something important? Naturally, when it is made clear 
why fuzzy computing matters, then it would not be easy for anyone to 
argue that the theory of fuzzy computation should not be part of a gen-
eral theory of computation. By admitting the omnipresence of vagueness, 
then it does make sense to argue that a theory of fuzzy computation is 
a general theory and, consequently, the ordinary theory of computation 
is a special case of this theory.

Unfortunately, the term fuzzy computation is considered to be a col-
lective term that describes fuzzy arithmetic, fuzzy databases, fuzzy web 
searches, etc. However, these might be considered as applications of 
“vague-like” computation, but they do not belong to the body of a theory 
of fuzzy computation. For example, a fuzzy database operates in a non-
vague environment and is supposed to handle vague data. Clearly, this 
is quite useful, but it is far from being a vague computation. In fact, to 
say that a fuzzy database is vague computing is like saying that a simu-
lator of a quantum computer than runs on conventional hardware is able 
to achieve exactly what a real quantum computer can do1. A theory of 
fuzzy computation should propose tools to compute in a vague environ-
ment. These tools could be conceptual computing devices that operate 
in an environment, where, for instance, one cannot precisely measure the 
position of particles, and commands are executed to some degree. This 
last requirement is in accordance with the principles of fuzzy set the-

1	  This is of course true once we accept the idea that quantum computers can achieve 
exactly what conventional hardware can achieve. However, this is not widely accepted 
(e.g., quantum computer can factorize large integers while for current conventional hard-
ware it is difficult to perform this task).
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ory. Obviously, we are not talking about a new computing paradigm but 
about a new approach to the essence of computation. Thus it would make 
sense to question the limits of computation. In order to study fuzzy com-
putation we need fuzzy conceptual computing device. Although a fuzzy 
version of the Turing machine may seem like an ideal fuzzy conceptual 
computing device, I think it is not a natural model of vague computation. 
Nevertheless, people have used it to explore fuzzy computation.

Any new theory should not ignore predictions and results delivered by 
older theories. Instead, it should encompass them as limiting cases. For 
example, consider the general theory of relativity. This theory predicted 
things that were predicted by Newton’s theory of gravity, but also it was 
able to make predictions about things not predictable by Newton’s the-
ory (e.g., gravitational waves) and explain things that Newton’s theory 
could not precisely explain (e.g., the exact shape of Mercury’s orbit). 
Thus, a theory of fuzzy computation should enrich current theories by 
incorporating vagueness into them.

Plan of the paper: Before providing an account of the goals and meth-
odology of fuzzy computation, it is necessary to explain what is vague-
ness, in general, and fuzziness, in particular, and then to give an over-
view of fuzzy Turing machines.

2. What is Vagueness?

In the English language the word fuzzy is a synonym of the word vague. 
At least in colloquial usage, the term vague means something uncertain, 
imprecise or ambiguous. However, this is not what vagueness is about 
(see [33] for an exposition of vagueness). Formally, it is widely accepted 
that a term is vague to the extent that it has borderline cases, that is, 
cases in which it seems impossible either to apply or not to apply this 
term. The Sorites Paradox, which was introduced by Eubulides of Miletus, 
is a typical example of a puzzle that shows what it is meant by borderline 
cases. In addition, the paradox is one of the so-called little-by-little argu-
ments. The term sorites derives from the Greek word for heap. The para-
dox is about the number of grains of wheat that makes a heap. All agree 
that a single grain of wheat does not comprise a heap. The same applies 
for two grains of wheat as they do not comprise a heap, etc. However, 
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there is a point where the number of grains becomes large enough to be 
called a heap, but there is no general agreement as to where this occurs.

Bertrand Russell [21] was perhaps the first thinker who gave a defini-
tion of vagueness:

“Per contra, a representation is vague when the relation 
of the representing system to the represented system is not 
one-one, but one-many.”

Based on this definition, one can say that a photograph that is so 
smudged, it might equally represent Brown or Jones or Robinson, is 
actually a vague photograph. Building on Russell’s ideas, Max Black [4] 
had argued that most scientific theories, and of course any theory of 
computation cannot be excluded, are “ostensibly expressed in terms of 
objects never encountered in experience.” For example, think that even 
the object oriented programming paradigm is about classes of object 
having fixed properties. In addition, it would be not an exaggeration to 
say that the Turing machine2 is an idealization of some real-world sys-
tem. However, there is no real-world system that operates like it and has 
the characteristics of the Turing machine. For example, we know that a 
universal machine accepts as input a string representing a number that 
denotes another machine and the input of the second machine. In the 
case of a machine that just adds two integers, one can verify that this 
number is:

G
n
 = 2249086222607801600000 × 36027271559398656000 × 51952835985245164544000

	 × 71181345225642136576000 × 119568896327701306265600000.

Let us compare this number with the number of objects in the world [32]:

(i)	 Planck-length = 10–35 m;

2	  Roughly, the Turing machine is a conceptual computing device that consists of an in-
finite tape, which is divided into writable cells, a scanning head that can read the contents 
of a cell or print something to a cell, and the so-called controlling device, which is a lookup 
table that controls the behavior of the machine. Initially, one writes the input data into the 
cells of the tape, and then sets the machine into motion. The machine delivers a result if it 
stops after some finite amount of time. This simple machine is surprisingly powerful and 
it can be used to compute many functions and numbers. Not so surprisingly, the Turing 
machine is considered as the cornerstone of the (classical) theory of computation.
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(ii)	 Planck-time = 10–43 s;

(iii)	 basic space-time region = 10–148 m3s;

(iv)	 volume of the universe = 1078 m3;

(v)	 age of the universe = 1018 s;

(vi)	 volume-age of the universe = 1096 m3s; and finally

(vii)	 number of objects in the world = 1096 m3s/10–148 m3s = 10244.

Clearly, G
n 
≫ 10244! Even if we can build a universal Turing machine, the 

scanning head could print or read symbols approximately because after 
a while ink would run out and symbols would be incorrectly printed on 
the tape. Of course we completely forget about power supply and other 
similar problems. The point here is that building a universal machine 
requires unrealistic resources. On the other hand, building a (computer) 
simulation of a Turing machine is something that can be easily done. 
However, the argument that modern computers are realizations of Tur-
ing machines is simply wrong because modern computers are interac-
tive systems while Turing machines are not. Thus modern computers 
are systems that can simulate Turing machines while Turing machines 
cannot simulate them.

Black [4] proposed as a definition of vagueness the one given by 
Charles Sanders Peirce:

“A proposition is vague when there are possible states of 
things concerning which it is intrinsically uncertain whether, 
had they been contemplated by the speaker, he would have 
regarded them as excluded or allowed by the proposition. 
By intrinsically uncertain we mean not uncertain in conse-
quence of any ignorance of the interpreter, but because the 
speaker’s habits of language were indeterminate.”

I do not think that this definition is very useful because it assumes 
that vagueness is a linguistic phenomenon (see [12] for an overview of 
this narrow approach to vagueness). It is obvious that there are real life 
objects that exhibit some sort of vagueness. For instance, clouds are defi-
nitely vague objects as one cannot precisely specify their boundaries. In 
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addition, the “orbit” of an electron is a cloud with no precise boundaries. 
However, I will say more on vague objects on page 7. Readers interested 
in a general discussion of vagueness should consult a book like [7]. As 
far it regards the linguistic phenomenon, one could argue that although 
the term dirty is a linguistic term, still when it refers to cloths and the 
effort needed to clean them, the term ceases to be just a linguistic term 
and describes a real-world situation. Furthermore, washing machines 
that employ these “linguistic” terms to clean our cloths by making reason 
able use of energy, water, and detergent are not some imaginary things, 
but real appliances available to everyone. Of course, one could argue 
further that there is no vagueness at all and we can precisely describe 
dirt using some sort of scale. Indeed, but then we are talking about 
degrees of dirtiness, something that is chiefly modeled with fuzzy sets. 
For a more detailed discussion of these and other arguments against 
vagueness see [28].

It is widely accepted that there are (at least) three different expressions 
of vagueness [25]:

Many-valued Logics and Fuzzy Logic Borderline statements are 
assigned truth-values that are between absolute truth and absolute false-
hood (see [24] for a book-length discussion of this idea).

Supervaluationism The idea that borderline statements lack a truth-
value.

Contextualism The truth-value of a proposition depends on its context 
(i.e., a person may be tall relative to American men but short relative to 
NBA players).

There is a fourth, more recent, expression of vagueness that is based 
on the use of paraconsistent logics [7, 11]. In what follows, I will discuss 
only models of vague computation where vagueness is described using 
fuzzy set theory. The presentation of these models requires some famil-
iarity with basic notion of fuzzy sets. The section that follows, briefly 
presents these ideas. Readers already familiar with fuzzy set theory can 
skip reading the next section.
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3. Fuzzy Set Theory in a Nutshell

Fuzzy set theory was introduced by Lotfi Askar Zadeh [37] as an exten-
sion of ordinary set theory. Zadeh defined fuzzy sets by generalizing the 
membership relationship. In particular, given a universe X, he defined 
a fuzzy subset of X to be an object that is characterized by a function 
A : X → [0, 1]. The value A(x) specifies the degree to which the element 
x belongs to A. Let me now present the basic operations between fuzzy 
subsets.

Assume that A, B : X → [0, 1] are two fuzzy subsets of X. Then, their 
union and their intersection are defined as follows:

(A ⋃ B) (x) = max[A(x), B(X)]

and

(A ⋂ B) (x) = min[A(x), B(X)]

Also, if A is the complement of the fuzzy subset A, then A(x) = 1 − A(x). 
More generally, it is quite possible to use functions other than min and 
max to define the intersection and the union of fuzzy subsets. These 
functions are known in the literature as t-norms and t-conorms, respec-
tively.

Definition 3.1 A t-norm is a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] 
that satisfies at least the following conditions for all a, b, c ∈ [0, 1]:

Boundary condition a ∗ 1 = a and a ∗ 0 = 0.

Monotonicity b ≤ c implies a ∗ b ≤ a ∗ c.

Commutativity a ∗ b = b ∗ a.

Associativity a ∗ (b ∗ c) = (a ∗ b) ∗ c.

Definition 3.2 A t-conorm is a binary operation ⋆ : [0, 1] × [0, 1] → [0, 1] 
that satisfies at least the following conditions for all a, b, c ∈ [0, 1]:

Boundary condition a ⋆ 0 = a and a ⋆ 1 = 1.

Monotonicity b ≤ c implies a ⋆ b ≤ a ⋆ c.

Commutativity a ⋆ b = b ⋆ a.
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Associativity a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.

For more information on t-norms and t-conorms see [13] or any other 
textbook on fuzzy set theory.

4. The Subject Matter

Essentially, the classical theory of computation started with the publi-
cation of Alan Turing’s On Computable Numbers, with an application to 
the Entscheidungsproblem [30]. Turing’s paper introduced a conceptual 
computing device, that now bears his name, which was devised in order 
to solve the Entscheidungsproblem, that is, a problem that was put forth 
by David Hilbert in 1928. Roughly speaking, the Entscheidungsproblem 
asks if it is possible to find a method that will take as input a description 
of a formal language and a proposition in the language, the output of 
the method should be either True or False depending on the truth value 
of the proposition.

When introducing a new model of computation, it is almost customary 
to introduce some sort of Turing machine that accommodates the cen-
tral idea behind the new model of computation. For example, in order 
to introduce probabilistic computing, Eugene Santos [22] introduced a 
probabilistic Turing machine. The same principle applies to quantum 
computing [10] and to non-deterministic computing (see [28] for a dis-
cussion of non-deterministic machines). However, not all Turing machine 
counterparts are very helpful. For instance, in quantum computing it is 
common to use quantum circuits in various theoretical studies because 
they can be used to directly express quantum algorithms.

The first steps towards a definition of a fuzzy Turing machine have 
been made by the inventor of fuzzy set theory [36]. Unfortunately, Zadeh 
provide “vague” definitions of fuzzy Turing machines and of fuzzy algo-
rithms. One could say that he actually described what a fuzzy algorithm 
might be and, in a sense, speculated about the properties of a fuzzy 
Turing machine. However, his work prompted other researchers to inves-
tigate the notions of fuzzy Turing machines and fuzzy algorithms (see 
[28] for a comprehensive account of all these formulations). Although, 
fuzzy Turing machines are not the only model of fuzzy computation and, 
to some extend, not the most natural one, still they have been studied 
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thoroughly and thus it makes sense to give the definition of a fuzzy 
Turing machine.

The definition that follows was proposed Jiří Wiedermann [35] and 
I consider it the most complete and general definition of a fuzzy Turing 
machine:

Definition 4.1 A nondeterministic fuzzy Turing machine with a unidi-
rectional tape is a nonuple

ℱ  = (Q, T, I, ∆, ␣, q
0
, q

f
 , µ, ∗),

where:

• Q is a finite set of states;

• T is a finite set of tape symbols;

• I is a set of input symbols, where I ⊆ T ;

• ∆ is a transition relation and it is a subset of Q × T × Q × T × {L, N, R}. 
Each action that the machines takes is associated with an element δ ∈ ∆. 
In particular, for δ = (q

i
, t

i
, q

i
+1, t

i
+1, d) this means that when the machine 

is in state q
i
 and the current symbol that has been read is t

i
, then the 

machine will enter state q
i
+1, the symbol t

i
+1 will be printed on the cur-

rent cell and the scanning head will move according to the value of d, 
that is, if d is L, N, or R, then the head will move one cell to the left, will 
not move, or it will move one cell to the right, respectively.

• ␣ ∈ T \ I is the blank symbol;

• q
0
 and q

f
 are the initial and the final state, respectively;

• µ : ∆ → [0, 1] is a fuzzy relation on ∆; and

• ∗ is a t-norm.

In order to fully understand how this conceptual machine works, it is 
necessary to present a few additional notions.

Definition 4.2 When µ is partial function from Q × T to Q × T × {L, N, R} 
and T is a fuzzy subset of Q, then the resulting machine is called a deter-
ministic fuzzy Turing machine.

A configuration gives the position of the scanning head, of what is 
printed on the tape, and the current state of the machine. If S

i
 and S

i + 1
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are two configurations, then S
i
 ⊢α S

i + 1
 means that S

i + 1
 is reachable in 

one step from S
i
 with a plausibility degree that is equal to α if and only if 

there is a δ ∈ ∆ such that µ(δ) = α and by which the machine goes from 
S

i
 to S

i + 1
. When a machine starts with input some string w, the characters 

of the string are printed on the tape starting from the leftmost cell; the 
scanning head is placed atop the leftmost cell, and the machine enters 
state q

0
. If

S
0
  ⊢α0 S1

  ⊢α1  S2
  ⊢α2  · · · ⊢αn−1  Sn

,

then S
n
 is reachable from S

0
 in n steps. Assume that S

n
 is reachable from 

S
0
 in n steps, then the plausibility degree of this computational path is

𝐷𝐷((𝑆𝑆0, 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛)) =   {
 1,                                                 𝑛𝑛 = 0
 𝐷𝐷((𝑆𝑆0, 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛−1)) ∗ 𝛼𝛼𝑛𝑛−1, 𝑛𝑛 > 0 

Obviously, the value that is computed with this formula depends on 
the specific path that is chosen. Since the machine is nondeterministic, it 
is quite possible that some configuration S

n
 can be reached via different 

computational paths. Therefore, when a machine starts from S
0
 and fin-

ishes at S
n
 in n steps, the plausibility degree of this computational path, 

which is called a computation, should be equal to the maximum of all 
possible computation paths:

d(S
n
) = max[D((S

0
, S

1
, ... , S

n
))].

In different words, the plausibility degree of the computation is equal 
to the plausibility degree of the computational path that is most likely 
to happen.

Assume that a machine starts from configuration S
0
 with input the 

string w. Then, a computational path S
0
, S

1
, . . . , S

m
 is an accepting 

path of configurations if the state of S
m
 is q

f
 . In addition, the string w is 

accepted with degree equal to d(S
m
).

Definition 4.3 Assume that ℱ  is a fuzzy nondeterministic Turing 
machine. Then, an input string w is accepted with plausibility degree 
e(w) by ℱ  if and only if:

• there is an accepting configuration from the initial configuration S
0
 

on input w;
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• e(w) = max
S
 {d(S) | S is an accepting configuration reachable from S

0
}.

Definition 4.4 The fuzzy language accepted by some machine ℱ  is the 
fuzzy set that is defined as follows:

L(ℱ ) = {(w, e(w))m|w is accepted by ℱ  with plausibility degree e (w)}.

It is quite possible that a Turing machine might not write on its tape 
the symbol 1 but something that looks like it. Then, when reading this 
symbol the machine might have trouble deciding whether it is an 1 or not. 
Obviously, this a very interesting problem but it might happen because 
the read-write head is defective. If this happens randomly, then it should 
be necessary to include this “feature” in our analysis. However, this is an 
open problem at the moment.

Another model of fuzzy computation, more close to the idea of vague-
ness, are fuzzy P systems (see [28] for an up-to-date and thorough pre-
sentation of fuzzy P systems and other similar fuzzy models of compu-
tation). P system have been introduced by Gheorghe Păun [17]. Roughly, 
a P system is a model of computation that is based on the functionality 
of the cell. To the best of my knowledge, any cell has a membrane that 
surrounds it, separates its interior from its environment, regulates what 
goes in and out, etc. Inside the membrane, the cytoplasm takes up most 
of the cell volume. Various organelles (i.e., specialized subunits within 
a cell that have a specific function) are “floating” inside the cytoplasm. 
Just like a cell, a P system is enveloped in a porous membrane that 
allows objects to move in and out. Inside a P system there is an indefi-
nite number of nested compartments, that is, compartments that may 
contain other compartments, etc., each of them enveloped by a porous 
membrane. Also, there is a designated compartment called the output 
compartment. In addition, each compartment may contain “solid,” possi-
bly repeated objects, that is, a multiset of objects, while it is associated 
with a set of multiset rewriting rules. The system operates in discrete 
time and these rules specify what changes can possible happen inside a 
compartment at each tick of the clock. In general, compartments cannot 
be deleted while objects may be multiplied, deleted, or introduced in a 
compartment. Computation stops when no rule is applicable and the 
result of the computation equals the number of objects that have been 
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accumulated in the output compartment. Now, a fuzzy P system is one 
where the multisets of objects are replaced by fuzzy multisets: 

Definition 4.5 Assume that M : X → ℕ characterizes a multiset M. 
Then, a fuzzy multi-subset of M is a structure A that is characterized by 
a function A : X → ℕ × [0, 1] such that if M(x) = n, then A(x) = (n, i). In 
addition, the expression A(x) = (n, i) denotes that the degree to which 
each of the n copies of x belong to A is i.

The cardinality of such a set is given by the following formula:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴 = ∑ 𝐴𝐴𝑚𝑚(𝑎𝑎)𝐴𝐴𝜇𝜇(𝑎𝑎)
𝑎𝑎∈𝐴𝐴

 

where A
m
(a) = n and A

µ
(a) = i.

Corollary 4.1 The result of a computation delivered by a fuzzy P sys-
tem is a positive real number.

5. Goals and Methodology

Philosophical questions regarding the distinction between hardware 
and software and other similar questions are essentially the same when 
it comes to a philosophy of fuzzy computation. However, the important 
question here is: Where does vagueness come into play when one deals 
with real computers? In different words, is the hardware we use today 
non-exact or non-well-defined so that it is justified to see vagueness 
come into play?

It should not surprise anyone the fact that modern computers con-
sume electricity that actually fluctuates. Typically, machines can cope 
with some small fluctuations of electricity because, among others, they 
have been designed to operate within a specific range of voltage. These 
fluctuations of electricity and other similar phenomena (e.g., noise in 
communication) are some sort of vague phenomena and, therefore, a 
raison d’être for vagueness. However, we intentionally choose to ignore 
this sort of vagueness and assume that our systems are exact when they 
are roughly exact. Of course this happens because those who built the 
first computers were not interested in vagueness and imprecision but 
rather in exactness and precision. Thus, one can safely conclude that 
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there is some sort of vagueness in hardware, which is left unexploited. 
The next big question is how can we make use of this vagueness? Or, 
going one step further, what would make a computer vague?

A computer that would harness vagueness in nature could be classified 
as a vague computer. But where do we really encounter vagueness in 
Nature? Surprisingly, based on remarks about the “fuzziness” of quantum 
mechanics (e.g., see [1, 19, 20]), one could argue that quantum com-
puters are actually vague computers, provided one replaces probability 
theory with possibility theory or any other theory derived from fuzzy set 
theory (see [29] for details). But let us see how vagueness is manifested at 
the molecular, atomic or subatomic level. More specifically, E. J. Lowe [14] 
shows that vagueness exists in the subatomic level:

“Suppose (to keep matters simple) that in an ionization 
chamber a free electron a is captured by a certain atom to 
form a negative ion which, a short time later, reverts to a 
neutral state by releasing an electron b. As I understand it, 
according to currently accepted quantum-mechanical prin-
ciples there may simply be no objective fact of the matter as 
to whether or not a is identical with b. It should be empha-
sized that what is being proposed here is not merely that 
we may well have no way of telling whether or not a and b 
are identical, which would imply only an epistemic indeter-
minacy. It is well known that the sort of indeterminacy pre-
supposed by orthodox interpretations of quantum theory 
is more than merely epistemic – it is ontic. The key feature 
of the example is that in such an interaction electron a and 
other electrons in the outer shell of the relevant atom enter 
an ‘entangled’ or ‘superposed’ state in which the number 
of electrons present is determinate but the identity of any 
one of them with a is not, thus rendering likewise indeter-
minate the identity of a with the released electron b.”

The idea behind this example is that “identity statements represented 
by ‘a = b’ are ‘ontically’ indeterminate in the quantum mechanical con-
text” [38]. In different words, in the quantum mechanical context a is 
equal to b to some degree, which is one of the fundamental ideas behind 
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fuzzy set theory. Based on this observation, it should be clear that a 
vague computer should make use of vagueness as manifested in nature.

A vague computer should be able to run programs. Clearly, such a 
computing device should be able to run conventional programs, since, 
as expected, all vague models of computation would be far more gen-
eral than their crisp counterparts. Forget for a moment the connection 
between vague and quantum computation and assume that there are no 
vague computers available at this moment. Then, does it make sense to 
talk about vague programs and vague programming languages today? 
The answer is emphatically yes and here is the rationale. Today, quantum 
computers are not widely available yet, still there are quantum-program-
ming languages, like Quipper [9], which can be used to create quantum 
programs. Such programming languages are implemented using conven-
tional methodologies and techniques (e.g., Quipper is written in Haskell) 
and programs expressed in these languages run on conventional hard-
ware. Similarly, one can design and implement a vague programming 
language using a conventional programming language so that vague 
programs run on conventional hardware. However, one should note that 
since quantum computers are more powerful than conventional machines 
(e.g., they can compute true random numbers [18] whereas von Neumann 
machines can compute only pseudo-random number), it is of course 
impossible to use this extra power when working with such quantum pro-
gramming languages. And of course this applies to vague programming 
languages too, provided that vague machines have similar capabilities.

Zadeh [36] has speculated about the form of commands in a vague 
programming language. Thus, according to Zadeh, a typical command of 
such a language would be “set y approximately equal to 10 if x is approxi-
mately equal to 5.” Ever since a number of vague programming languages 
have been designed and implemented. RASP [8] was an extension of 
BASIC that provided basic operations for fuzzy sets but it did not include 
commands similar to the ones suggested by Zadeh’s. The FLISP [26] pro-
gramming language, an extension of LISP, provided facilities to input and 
process fuzzy data. For example, in order to enter the fuzzy set

Q = 0.3/2 + 0.9/3 + 1/4 + 0.8/5 + 0.5/6
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where f/d means that d ∈
f
 Q (i.e, d belongs to Q to degree equals to f), 

one had to enter the following commands:

(SETQ U ‘ (0 1 2 3 4 5 6 7 8 9))

(FSETQ Q ((U) (FSET ((2@0.3) (6@0.5) (5@0.8) (3@–0.9) (4@1))))).

HALO [6] was a LISP-like language that employed many Pascal-like and 
C-like structures. In addition, the logical operations as well as some other 
operations are fuzzy. The assignment statement of the languages L and 
XL [15] allowed users to assign fuzzy numbers to variables. In addition, 
XL included a fuzzy repetition construct. Fril++ [3] is an object-oriented 
language where an object can be an instance of a class to some degree. 
This is a particularly interesting idea and implies that two instances of 
some class can be equal to some degree. And it would be quite interest-
ing to see how one could implement this idea in a way similar to Java’s 
equals( ) method. Fuzzy Arden Syntax is programming language that has 
been designed “to provide an easy means of processing vague or uncer-
tain data, which frequently appears in medicine” [34]. One can define 
fuzzy sets very easily:

U: = fuzzy set (2,0.3), (6,0.5), (5,0.8), (3,–0.9), (4,1).

The language allows commands that are reminiscent of Zadeh’s “com-
mands”:

TempatureList: = read {temperature} where

it occurred within the past 24 hours

fuzzified by hours.

And of course, there is a fuzzy λ-calculus [2] where each term is asso-
ciated with a degree and the b-reduction is redefined. I suppose the 
authors meant β-reduction, but that is just an educated guess… The 
notion of “approximately equal” can be introduced in a language by 
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means of an extended assignment operator (e.g., ~=) and an extended 
equality operator (e.g., ~==). Thus, a command like

x ~= y

would mean that x is actually assigned a compound value like y ± δy, 
where the δy should be implementation dependent or the user should 
be able to configure the compiler accordingly. In a sense, x would be an 
interval and not just a point.

The languages that were briefly reviewed can be roughly divided into 
two categories: those that allow the use of fuzzy sets and those that 
implement some basic principle of fuzzy set theory (e.g., similarity of 
objects). The languages that implement some sort of similarity with 
degree are closer to the spirit of vagueness. In general, fuzzy program-
ming languages should provide facilities for the definition and manipu-
lation of fuzzy sets. In addition, they should provide control structures 
that can handle fuzzy logical expression. Also, it is necessary to provide 
facilities to express similarities between structures.

In the previous section, I stated that Turing devised his (automatic) 
machine in order to solve the Entscheidungsproblem. This is a bit inaccu-
rate. The truth is that Turing devised his machine and then he devised the 
universal Turing machine with which he gave his answer to the Entschei-
dungsproblem. In modern computer parlance, Turing essentially proved 
that it is not possible to tell whether a program that is not responding 
has entered a vicious circle or not. This problem is known as the halting 
problem. By showing that the halting problem is as hard as the Entschei-
dungsproblem, he proved that the Entscheidungsproblem is unsolvable, 
or better it is Turing unsolvable. Turing went one step further and made 
a bold statement—if a number or a function is computable, then it must 
be computable by a Turing machine. This statement is now known as 
the Church-Turing thesis.

Clearly fuzzy Turing machines form an extension of the classical arche-
typal conceptual computing device. Therefore, they should compute 
as many numbers and/or functions as their classical counterpart. The 
important question is whether these machines are more powerful than 
their classical counterparts. Jiří Wiedermann [35] has shown that fuzzy 
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Turing machines are more powerful than ordinary Turing machines. 
In different words, fuzzy Turing machines are conceptual computing 
devices that have hypercomputational capabilities [27]. Despite this fact3 
it is not clear at all what are the computational limits of these machines 
and how this will affect real world computing. After all, for each concep-
tual and logically consistent computing device there is a limit to what it 
can achieve. For example, Toby Ord and Tien D. Kieu [16] have argued 
that every logically consistent computing device cannot solve its own 
halting problem. Since there are no universal fuzzy Turing machines, it 
makes no sense to talk about their halting problem, nevertheless, it does 
make sense to try to find their computational limits.

Mark Changizi [5] assumes the validity of three theses or hypothe-
ses: the Church-Turing thesis, the Programs-in-Head hypothesis, and the 
Any-Algorithm hypothesis. These hypotheses state:

Programs-in-Head Hypothesis For most natural language predicates 
P and their natural language negation ‘¬P ’, their interpretations are 
determined by you using programs in the head.

Any-Algorithm Hypothesis You are free to choose from the set of all 
algorithms when interpreting natural language predicates or their natural 
language negations.

Changizi argues that these hypotheses together with the Church-Tur-
ing thesis imply the omnipresence of vagueness in language. Of course, 
it is not know if the Church-Turing thesis is valid and hypercomputa-
tion implies that it is not. Next, the two hypotheses are based on the 
assumption that mechanism is valid, which is equally problematic. In [27] 
I have argued against mechanism so I will not repeat these arguments 
here. What is even more problematic is that vagueness is restricted into 
language and because of Changizi’s arguments any language is mostly 
vague. However, on a place with no intelligent beings there is no lan-
guage and so no vagueness! Ergo, vagueness is not something real. And 
this is the reason I have tried to establish that vagueness is a fundamental 
property of the physical world and not some human invention.

3	  See [28] for a discussion of various attacks to this result.
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Conclusions

Fuzzy computing is a new branch of (theoretical) computer science that 
is not fully developed. There are a number of open questions regarding 
fuzzy conceptual computing devices and their capabilities. The answers 
to these questions greatly depend on one’s philosophical prejudices. 
I have tried to briefly present the field of fuzzy computation and to dis-
cuss these open problems based on my own prejudices. In summary, 
there is no universal fuzzy Turing machine and it seems universality has 
nothing to do with vague computing devices. However, this should not 
pose an obstacle in the construction of vague computers, which should 
be based on vagueness as it appears at the particle level. Also, it seems 
that vague computing devices will be more powerful than their classical 
counterparts, but the upper bound of their computational power has not 
been determined yet.
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