
 

International Conference KNOWLEDGE-BASED ORGANIZATION 
Vol. XXV            No 3               2019 

 

STUDY ON THE EVOLUTION, RESULTS AND TRENDS OF APPLYING 
STOCHASTIC OPTIMIZATION 

Alexandru HAMPU, Vasile CĂRUȚAȘU 

“Nicolae Bălcescu” Land Forces Academy, Sibiu, Romania 
alexhampu@yahoo.com, v.carutasu@yahoo.com 

 
 

Abstract:This paper aims to analyze the stage reached in the development and application of 
stochastic optimization models, highlighting some of the most important moments and achievements in 
the field. The author tries to identify particular aspects that define the classes of stochastic 
optimization models, specifying the level reached in certain directions of research and implementation 
of these models in order to identify possible directions of development of these specific techniques. 
 
Keywords: Stochastic optimization 
 
1.Evolution of stochastic optimization 
Stochastic Linear Programming 
(Optimization) is a branch of mathematical 
programming that emerged from the need 
for decision-making optimization in 
processes or activities where some 
intervening factors are random. 
Starting from the model of the deterministic 
mathematical programming, a multitude of 
stochastic models have been made which 
preserve their general structure but have 
acquired a particular character taking into 
account the characteristic conditions of 
each model. A general form of astochastic 
programming problem (SPP) is: 
min (max) z(x,ω ) = ( )ωTc x(1)  

subject to: �
𝐴𝐴 ( )ω 𝑥𝑥 =  𝑏𝑏 ( )ω

𝑥𝑥≥  0,
�(2) 

whereA ( )ω , b ( )ω , c ( )ω are random 
matrices of dimensions A: m x n, b: m x1, c: 
n x 1 whose elements are random variables 
defined on the probability field { }P , , KΩ . 
NotingX(ω ) = ∈x{ Rn | A ( )ω x= b ( )ω , x≥  
0}, the problem (1.1)-(1.2) becomes: 

 max z(x,ω )= = ( )ωTc x(3)subject 
to: x∈ X(ω )                         (4) 
According to some authors a classification 
of stochastic models can be made from the 
two principles formulated in (SPP): “wait 
and see” respectively “here and now”. For 
the first case where a (SPP) issolved as a 
deterministic one that has as a characteristic 
a probability distribution, it is called 
distribution problems. For the second case, 
we mention two of the main types of 
problems, namely Two-Stage Programming 
Problem and Programming under 
Probabilistic Constraint. 
1.1 Distribution Problems 
Ifz(x,ω ) of relation (1) is a random 
variable, it is not possible to know the 
values of this function before determining 
the exact values of the coefficients, which is 
why we try to determine the distribution 
function and / or some characteristic values 
such as the mean or the dispersion.The first 
who formulated this problem was G. 
Tintnerin the work [20]. This type of 

 
DOI: 10.2478/kbo-2019-0112 
© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. 
 

25

mailto:alexhampu@yahoo.com


 
problem is also known as “wait and see”, 
named by A. Mandansky. 
Let us consider the problem (SPP) (3) –(4); 
if (A, b, c) has a known distribution it 
appears to be a deterministic problem. 
However, we can have situations of 
different types: it is possible that only the 
objective function is a random vector, only 
bis random, Ais random or there are 
combinations of the three situations. 
If only c is random vector and the set of 
possible solutions X = ∈x{ Rn | Ax= b, x≥0} 
has constant values, then one of the extreme 
points of the convex setX will be the 
optimal solution.In such a situation the 
random vector c can be written in the form 
cT+t(𝜔𝜔)∙∙dTthe   objective   function   being 
z(x,ω )=(cT+t(𝜔𝜔)dT)xand the distribution 
function F(z) of the random variable z is 
like: 
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For this case of the vector z important 
results were obtained by B. Bereanu [2]; for 
the general case in which z is random 
without the previous form J.B. Ewbank, 
B.L. Foote and H.J. Kumin[10] have 
determined the distribution function with a 
certain type of integrals. 
If the vector b is random the problem can 
be solved by using the dualproblem as in 
the random case of c. Important results 
were obtained by B. Bereanu [3] who 
formulated three theorems related to the 
continuity of the optimal values of the 
respective model. Another method that can 
be used in this case in which only c is 
random is the simplex algorithm. 
There are different methods for determining 
the distribution function; some are exact but 
very laborious methods, others are methods 
that approximate the distribution 
function.From the first category we can 
remember the complete description method 
and as approximate methods: the simulation 
method, the discretization method, the 

incomplete description method, the 
Cartesian integration method [3]. Some of 
these methods are described in [17]. 
If the vectors c and b are random, the 
simulation method can also be used. We 
note with 𝜇𝜇(𝐴𝐴, 𝑏𝑏, 𝑐𝑐)the optimum value of 
the problem, we assume there is a lot of 
possible solutions, 𝜇𝜇 is finite with 
probability 1 and its mean exists. Then we 
can generate values (samples) (Ai, bi, ci), 
i=1, …, N   independent which are non-
random and approximate E(𝜇𝜇) in the form: 

𝜇𝜇N =
1
𝑁𝑁
�𝜇𝜇(𝐴𝐴𝑖𝑖 , 𝑏𝑏𝑖𝑖 , c𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

and the simulation method is used to 
calculateP(𝜇𝜇 ≤ 𝑧𝑧). 
The discretization method can be applied to 
a problem where A, b, c are partially or 
entirely random and H and h are 
deterministic values with which 
deterministic restrictions Hx≤h are formed 
other than random  Ax≤b.     
Assuming that (A, b, c) has a finite number 
of possible values (A(i), b(i), c(i)), i= =1, 2, ..., 
swhich occur with the probabilities pi,the 
optimal value of the linear pro-gramming 
problemcan be calculated [13]: 
max z=c(i)Tx 
subject to: Hx ≤h(5) 
   A(i)x≤ b(i) 
   x≥ 0 
fori=1, ..., t.Ifx(i)is an optimal solution of 
the problem (5), and considering the 
optimum of the objective function 
𝜇𝜇(i)==c(i)Tx(i)  then the mean of the function 
is: 

E(𝜇𝜇)=∑
=

r

i

i
ip

1

)(µ (6) 

For a c deterministic and if we have a small 
number of restrictions in the problem (5) we 
first solve the type Hx ≤h then the restrictions 
A(i)x≤ b(i) for each i, i=1, 2, ..., s. 
The last method in the approximate 
category is the Cartesian integration 
methodintroduced by B. Bereanu [4]. 
Random matrices can be represented as 
linear functions, as follows: 

A  =A(0) +A(1)𝜔𝜔1 + . . . +A(s)𝜔𝜔𝑠𝑠 
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b =b(0)  + b(1)𝜔𝜔1 + . . . +b(s)𝜔𝜔𝑠𝑠 
c =c(0)   + c(1)𝜔𝜔1 + . . . +c(s)𝜔𝜔𝑠𝑠 

If certain conditions are met by 𝜔𝜔 
formulated in [4], the mean E(𝜇𝜇(𝜉𝜉)) can be 
calculated: 
E(𝜇𝜇(𝜔𝜔))= ∫

T

dvvv )()( ϕµ (7) 

where it was considered v=(v1, v2, ..., vs) 
instead of 𝜔𝜔, and the notation A(v), b(v), 
c(v)  expresses the dependence of vectors A, 
b, c on v; by 𝜑𝜑(v)  we have designated the 
probability density of  𝜔𝜔,  𝜇𝜇(𝜔𝜔) will be 
noted with  𝜇𝜇(𝑣𝑣)=𝜇𝜇(𝐴𝐴(𝑣𝑣), 𝑏𝑏(𝑣𝑣), 𝑐𝑐(𝑣𝑣))being 
a continuous function inT.  
Bereanu used a formula called the Cartesian 
multidimensional quadrature formula, i.e. 
an approximation sum for the integral (7). 
The form of this quadrature formula 
introduced in [19] is: 
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Using such a formula, the integrals of type 
(7) as well as other forms, the objective 
function can be calculated. 
1.2. Two-stage stochastic programing 
problems 
In such (SSP) decision will be taken in two 
stages; given the existence of some 
restrictions in which b is random, in this 
case it will not be possible to determine x so 
that the relation Ax = b will occur. There 
will be a difference between the left and 
right members which will be a random 
variable that will cause the penalty of the 
objective function, a penalty that must 
obviously be minimized. The general model 
introduced by Beale [1] and Dantzig [8] is: 

          min {cTx + E(𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦

 𝑞𝑞𝑇𝑇𝑦𝑦)} 
subject to :A x +By= b 
 x,y≥  0 
the second stage (the recourse problem) 
being as follows:  

         min qTy 
subject to:  By= b- A x 
y≥  0. 
Obtaining the minimum of the second stage 
Q(x,b)  its mean value is determined 

Q(x)=EQ(x,b)  the stochastic case becoming 
a deterministic one. 
Some important results related to the two-
stage stochastic programming problems 
refer to the submodels derived from it both 
as a form of expression and as solving 
methods. G.B. Dantzig [8], E.M.L. Beale 
[1], and R. Wets [21] have studied this 
model, which they calledthe complete 
recourse, considering that the matrix can be 
partitioned into form B = (I, -I), where I is 
the unit matrix. If B = I the model is called 
with a simplerecourse.  
For the stochastic programming with 
recourse, different approaches have been 
used depending on the conditions set for the 
problem and for which there are different 
solving techniques: 
- primal method proposed in 1983 by Wets 
[22]. The algorithm uses a base called a 
perfect basis or a workbasis, whose 
existence is demonstrated and which allows 
to determine the optimal solution. 
- dual method proposed byPrékopa [14]in 
1990 based on Lemke's simplex dual 
algorithm [12] in 1954. 
- decomposition stochasticmethod if 𝜉𝜉 (the 
random vector of free terms) has a discrete 
distribution that was initiated by Strazicky 
[19]. The author uses a particular pattern 
structure that allows the dual problem 
writing so that the revised simplex 
algorithm can be used. The generalized case 
of the algorithm can be used if both 𝜉𝜉 and B 
or q are random with a finite number of 
realizations. 
-L-shapedmethod introduced by Van Slyke 
and Wets [16] resolves stochastic 
programming problems with recourse and 
optimal control problems by means of an 
algorithm that generates linear restrictions 
for those restrictions that are violated by a 
decision vector that is supposed to be 
optimal. The form of an L-shaped program 
is the following: 
 min z=c1x+ c2y(8) 
subject to:A11x                =b1(9) 

A21x + A22y     =b2(10) 
x≥0, y≥0 
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The use of the program is made taking into 
account some of the features that it needs to 
have, namely: 
(i) the restrictions (10) are formulated in the 
sense that for those vectors x for which A11x 
=b1, x≥0, there exists y≥0 A21x + A22y = b2 
are satisfied. 
(ii) the vector y and c2y are relatively small 
factors in determining the optimum value 
(iii) the restrictions (10) are large in 
number, possibly infinite. 
The model is resolved by a three-step 
algorithm using the simplex algorithm. It is 
also presented the possibility of approach 
by decomposition method due to Dantzig 
and Wolfe [9]. 
Another form of two-stage stochastic 
programming  model is the integer 
stochastic programming in two stages in 
which some or all of the variants that 
appear in the problem are integers and are 
supposed to be discrete. The model was 
introduced by R.M. Wollmer [23] and has 
at least two approaches to solving: 
- the first one relieson approximate the 
optimal solution through various 
probabilistic methods approaching by L. 
Stougie [18]. 
- the second way of solving is based on the 
Benders decomposition through which the 
optimal determination is made. 
1.3. Programming under probabilistic 
constraint 
Programming under probabilistic constraint 
appeared due to some stochastic 
programming problems of certain 
restrictions which can not be known with 
certainty, in which case a threshold ∝ is 
established over which to obtain the 
probability of realization of the restrictions.  
 optimum z= cTx 
subject to: P(Ax ≤  𝑏𝑏) ≥∝ 
x≥0, 
where∝is a probability vector. 
In such a model, some restrictions may be 
deterministic. 
The model was introduced by Charnes, 
Cooper and Symonds [6] under the name of 

chance constrained programming and later 
developed by other authors. 
One approach is to make the decision after 
the stochastic problem transforms into what 
is called its deterministic equivalent [6]. It 
is a method of transforming probability 
constraints into some deterministic ones, 
and it is particularly interesting where the 
deterministic equivalent leads us to convex 
programming that can be solved by specific 
methods. Programming under probabilistic 
constraint contains a relatively large 
number of models, of which we will list 
only a few: 
-E- model: 
max E(cTx) 
subject to:P (Ax≤ 𝑏𝑏) ≥∝ 
 x=Db 
where P is a probability, E is the expected 
operator A, b and c may have some or all of 
the random components 
- V- model: 
 min E(cTx-c0Tx0)2 

subject to:P (Ax≤ 𝑏𝑏) ≥∝ 
 x=Db 
where the objective function is to minimize 
the error caused by the deviation from a 
preferred valuez0= c0Tx0. 
- P- model: 
  maxP(cTx≥c0Tx0)2 

subject to: P (Ax≤ 𝑏𝑏) ≥∝ 
 x=Db. 
 These three models are representative for 
programming under probabilistic constraint, 
some particular cases existing besides them. 
   
2.Trends in the evolution of stochastic 
programming  
We will further present some trends in the 
(SPP) approach over the last few years and 
will most likely notice the same trend. 
The main issues regarding the current 
trends in the stochastic programming 
approach are based on the following causes 
which obviously imply certain directions of 
evolution (SPP): 
a) Incomplete deciphering of the internal 
structure of existing models, of some of 
their properties, which will further 
determine studies on the establishment of 
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all the theoretical aspects of these models. 
There are still such situations where not all 
properties, valences, or usage limits of their 
models are known. 
b) Lack of or insufficient development of 
models to optimize certain activities. 
Generally, optimization models and 
techniques for most of the stochastic 
processes have been developed, but there 
are situations where no such models have 
yet been made, the causes being diverse, 
most often related to the difficulty of 
approach. For those classes of activities or 
processes for which (SPP) models have not 
yet been developed, new research directions 
will obviously be opened to lead to the 
associated models. 
c) The absence of software based on 
certain models already created, or the 
existence of barriers to their realization. 
This causes a trend that seems to be the 
most obvious because it takes into account 
the practical side of using stochastic 
programming as a working tool of the 
decision maker. An example of this is the 
computational aspect of stochastic 
programming, which often leads to the 
approximation of a large number of 
possible scenarios by its significant 
reduction, which is imposed by the limited 
capacities of ordinary computers. Methods 
to solve this problem are sought, for 
example the stochastic decompostation 
proposed in the [15] paper which for a class 
of problems (SPP) allows the decision to be 
called compromise, a new concept of 
decision. The method provides a solution 
similar to the classic method but with a 
much smaller amount of computing that can 
be done on common computers. In recent 
years, there has been a trend towards the 
development of models that can be run 

through software designed for office 
calculators available to decision-makers, 
with emphasis on ease of use by decision 
makers who are not very well-advised in 
the field. There are complex software such 
as XPRESS  orAIMMS that include (SPP) 
and are used in major companies as well as 
in Universities to solve some of the most 
diverse practical applications or current 
decision making optimizations. 
 
3. Conclusions 
In this paper I have analyzed some of the 
main models (SPP) as well as some trends in 
the evolution of studies in this field. 
It is worth pointing out that after 1950, when 
these techniques were used to optimize 
decision-making in various areas of human 
activity, the benefits of using such 
optimization methods were obvious. 
In astochastic economic, industrial, military 
etc. activity involving relatively large 
financial, material or other expense, the 
optimal decision can only be obtained on the 
basis of decision-making techniques based 
on, among other things, models of stochastic 
programming. There are known situations 
where decisions have been made on the basis 
of stochastic modeling in large-scale 
investments, a well-known example of the 
regulation of Lake Balaton based on the 
models applied by Prékopa and Szántai, 
modeling which yielded excellent results 
proven practically in the 40 years of 
exploitation, this being an expression of the 
effectiveness of the decision in this economic 
activity involving major expenditure. 
The conclusion is that, being a very useful 
tool for decision making in the case of 
random activities, stochastic programming 
will continue to evolve by identifying new 
directions and possibilities for application.
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