Study on the Evolution, Results and Trends of Applying Stochastic Optimization

Open access


This paper aims to analyze the stage reached in the development and application of stochastic optimization models, highlighting some of the most important moments and achievements in the field. The author tries to identify particular aspects that define the classes of stochastic optimization models, specifying the level reached in certain directions of research and implementation of these models in order to identify possible directions of development of these specific techniques.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Beale E.M.L. On Minimizing a Convex Function Subject to Linear Inequalities Journal of the Royal Statistical Society. Series B vol 17 (2) pp.173-184 1955.

  • [2] Bereanu B. On Stochastic Linear Programming. Distributions Problems Stochastic Technology Matrix Z. Wahrscheinlichkeitstheorie Verw. Gebiete 8 pp.148-152 1967.

  • [3] Bereanu B. The Continuity of the Optimumin Parametric Programming and Applications to Stochastic Programming J. of Opt. Theory and its Applications 18 pp.319-333 1976.

  • [4] Bereanu B. The Distribution Problem in Stochastic Linear Programming. The Cartesian Integration Method Reprint No. 7103 Center of Mathematical Statistics of the Academy of the Socialist Republic of Romania Bucharest pp.71-103 1971.

  • [5] Bereanu B. Some Numerical Methods in Stochastic Linear Programming under Risk and Uncertainty Stoch. Programming (M.A.H. Dempster ed) Academic Press London pp.196-205 1980.

  • [6] Charnes A. Cooper W.W. și Symonds G.H. Cost Horizons and Certainty Equivalents: an Approach to Stochastic Programming of Heating Oil Management Sci. 4 pp.235-263 1958

  • [7] Charnes A. Cooper W.W. Deterministic Equivalents for Optimizating and Satisfying under Chance Constraint. Operation Research 11(1) pp.18-39 1963.

  • [8] Dantzig G.B. Linear Programming under Uncertainty Management Sci. 1 pp.197-206 1955.

  • [9] Dantzig G.B. and WolfeP. The DescompositionAlgorithm for Linear Programs Econometrica vol.29 pp.767-778 1961.

  • [10] Ewbank J.B. Foote B.L. Kumin. H.J. A Method for the Solution of the Distribution Problem of Stochastic Linear Programming SIAM J. Appl. Math. 26 pp.237-243 1974.

  • [11] Lageweg B.J. Lenstra J.K.Rinnoy Kan A.H.G.R. Stougie L. Stochastic Integer Programming by Dynamic Programming StatisticaNeerlandica 39 (2) 97-113 1985.

  • [12] Lemke C.E. The Dual Method for Solving the Linear Programming Problem Naval Research Logistic Quarterly 1 pp.36-47 1954.

  • [13] Prékopa A. Stochastic Programming AkadémiaKiadó Budapest 1995.

  • [14] Prékopa A. Dual Method for a One-stage Stochastic Programming Problem with Random RHS Obeying a Discrete Probability Distribution Zeitschrift fur Op.Research 38 pp.441-461 1990.

  • [15] Sen S. and Liu Y. Mitigating Uncertainty via Compromise Decision in Two-stage Stochastic Linear ProgrammingOperations Research 64 (6) 1422-1437 2014.

  • [16] Slyke R. van Wets R.J.-B. L-shaped Linear Program with Applica.tion to Optimal Control and Stochastic Linear Programs SIAM J. on Applied Math. 17 pp.638-663 1969

  • [17] Stancu-Minasian I.M. Programareastochastică cu mail multefuncțiiobiectiv Ed. AcademieiRSR 1980.

  • [18] Stougie L. Design and Analysis of Algorithms for Stochastic Integer Programming CWI Tract 37 Centrum voorWiskundeen Informatica Amsterdam 1987.

  • [19] Strazicky B. Computational Experience with Algorithm for Discrete Recourse Problems Stochastic Programming (M.A.H. Dempster ed.) Academis Press London pp.263-274 1980.

  • [20] Tintner G. Stochastic Linear Programming with Applications to Agricultural Economicsz Proseedings of the Second Symposium in Linear Programming H.A. Antotosiewicz (ed.) National Bureau Standard Washington pp. 197-228 1955.

  • [21] Wets R.J.-B. Programming under uncertainty: the complete problem Z. WahrscheinlichkeitstheorieVerw Gebiete 4 pp.316-339 1966.

  • [22] Wets R.J.-B. Solving stochastic programs with simple recourse Stochastics 10 pp.219-242 1983.

  • [23] Wollmer R.M. Two-stage linear programming under uncertainty with 0-1 first stage variables Mathematical programming 19 pp.279-288 1980.

Journal information
Target audience: researchers in the fields of political and financial law
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 3
PDF Downloads 12 12 3