INTERPOLATION OPERATORS ON A TRIANGLE WITH ALL CURVED SIDES

Alina BABOS
"Nicolae Bălcescu" Land Forces Academy, Sibiu, Romania alina_babos_24@yahoo.com

Abstract

This paper contains a survey regarding interpolation and Cheney-Sharma type operators defined on a triangle with all curved sides; we considers as well some of the product and Boolean sum operators. We study their interpolation properties and the degree of exactness.

Keywords: interpolation operators, triangle with curved sides, Cheney-Sharma type operators, products and Boolean sum operators

1. Introduction

The aim of this survey is to present some interpolation and Cheney-Sharma type operators for functions defined on a triangle with all curved side (see [1], [2]). They came as an extension of the corresponding operators for functions defined on triangles with all straight sides (see, e.g.,[3], [4], [9]).
We study these operators especially from the theoretical point of view.
We study two main aspects of the constructed operators: the interpolation properties and the degree of exactness.
Recall that $\operatorname{dex}(\mathrm{P})=r$ (where P is an interpolation operator) if $\mathrm{P} f=f$, for $f \in P_{r}$, and there exists $g \in P_{r+1}$ such that $P g \neq g$, where P_{m} denote the space of the polynomials in two variables of global degree at most m.

In Section 2 we study Lagrange, Hermite and Birkhoff interpolation operators and in Section 3 we present some Cheney-Sharma type operators together with their product and Boolean sum for the triangle with all curved sides.
Given $h>0$, denote by \widetilde{T}_{h} the triangle having the vertices $V_{1}=(0, h), V_{2}=(h, 0)$ and $V_{3}=(0,0)$, and the three curved sides γ_{1}, γ_{2} (along the coordinates axes) and γ_{3} (opposite to the vertex V_{3}). We define γ_{1} by ($x, f_{1}(x)$) with $f_{1}(0)=f_{1}(h)=0, f_{1}(x) \leq 0$, for $x \in[0, h] ; \gamma_{2}$ defined by $\left(g_{2}(y), y\right)$, with $g_{2}(0)=g_{2}(h)=0, g_{2}(y) \leq 0$, for $\quad y \in[0, h]$ and γ_{3} defined by one-to-one functions f_{3} and g_{3}, where g_{3} is the inverse of the function f_{3}, i.e., $y=f_{3}(x)$ and $x=g_{3}(y)$, with $x, y \in[0, h]$ and $f_{3}(0)=g_{3}(0)=h$, $h \in R_{+}$, (see Figure 1).

Figure 1. Triangle \widetilde{T}_{n}

2. Interpolation operators

2.1. Lagrange-type operators

Suppose that F is a real-valued function defined on \widetilde{T}_{h}. Let L_{1} and L_{2} be the interpolation operators defined by

$$
\begin{align*}
\left(L_{1} F\right)(x, y) & =\frac{x-g_{3}(y)}{g_{2}(y)-g_{3}(y)} F\left(g_{2}(y), y\right) \tag{1}\\
& +\frac{x-g_{2}(y)}{g_{3}(y)-g_{2}(y)} F\left(g_{3}(y), y\right) \\
\left(L_{2} F\right)(x, y) & =\frac{y-f_{3}(x)}{f_{1}(x)-f_{3}(x)} F\left(x, f_{1}(x)\right) \\
& +\frac{y-f_{1}(x)}{f_{3}(x)-f_{1}(x)} F\left(x, f_{3}(x)\right) \tag{2}
\end{align*}
$$

Theorem 1.([1]) If $F: \widetilde{T}_{h} \rightarrow R$, then we get (1) the interpolation properties: $L_{1} F=F$, on $\gamma_{2} \cup \gamma_{3}, L_{2} F=F$, on $\gamma_{1} \cup \gamma_{3}$.
(2) the degree of exactness: $\operatorname{dex}\left(L_{i}\right)=1$, $i=\overline{1,2}$.

Proof. (1) $\left(L_{1} F\right)\left(g_{2}(y), y\right)=F\left(g_{2}(y), y\right)$, $\left(L_{1} F\right)\left(g_{3}(y), y\right)=F\left(g_{3}(y), y\right)$, $\left(L_{2} F\right)\left(x, f_{1}(x)\right)=F\left(x, f_{1}(x)\right)$,
$\left(L_{2} F\right)\left(x, f_{3}(x)\right)=F\left(x, f_{3}(x)\right)$.
So, the interpolation properties are verified.
(2) $L_{1} e_{i j}=e_{i j}$ for $i, j \in N, i, j \leq 1$ and
$L_{1} e_{20} \neq e_{20}$, where $e_{i j}(x, y)=x^{i} y^{j}$. So. It follows that $\operatorname{dex}\left(L_{i}\right)=1$.

2.2. Hermite-type operators

Suppose that F has the partial derivatives $F^{(1,0)}$ on γ_{2} and γ_{3} respectively $F^{(0,1)}$ on γ_{1} and γ_{3}. We consider the operators H_{1} and H_{2} defined by

$$
\begin{aligned}
& \left(H_{1} F\right)(x, y)=\frac{\left[x-g_{3}(y)\right]^{2}\left[3 g_{2}(y)-g_{3}(y)-2 x\right]}{\left[g_{2}(y)-g_{3}(y)\right]^{3}} . \\
& F\left(g_{2}(y), y\right)+\frac{\left[x-g_{2}(y)\right]^{2}\left[3 g_{3}(y)-g_{2}(y)-2 x\right]}{\left[g_{3}(y)-g_{2}(y)\right]^{3}} .
\end{aligned}
$$

$F\left(g_{3}(y), y\right)+\frac{\left[x-g_{2}(y)\right]\left[x-g_{3}(y)\right]^{2}}{\left[g_{2}(y)-g_{3}(y)\right]^{2}}$.
$F^{(1,0)}\left(g_{2}(y), y\right)+\frac{\left[x-g_{3}(y)\right]\left[x-g_{2}(y)\right]^{2}}{\left[g_{3}(y)-g_{2}(y)\right]^{2}}$.
$F^{(1,0)}\left(g_{3}(y), y\right)$
and

$$
\begin{align*}
& \left(H_{2} F\right)(x, y)=\frac{\left[y-f_{3}(x)\right]^{2}\left[3 f_{1}(x)-f_{3}(x)-2 y\right]}{\left[f_{1}(x)-f_{3}(x)\right]^{3}} \\
& F\left(x, f_{1}(x)\right)+\frac{\left[y-f_{1}(x)\right]^{2}\left[3 f_{3}(x)-f_{1}(x)-2 y\right]}{\left[f_{3}(x)-f_{1}(x)\right]^{3}} . \\
& F\left(x, f_{3}(x)\right)+\frac{\left[y-f_{1}(x)\right]\left[y-f_{3}(x)\right]^{2}}{\left[f_{1}(x)-f_{3}(x)\right]^{2}} . \\
& F^{(0,1)}\left(x, f_{1}(x)\right)+\frac{\left[y-f_{3}(x)\right]\left[y-f_{1}(x)\right]^{2}}{\left[f_{3}(x)-f_{1}(x)\right]^{2}} . \tag{4}\\
& F^{(0,1)}\left(x, f_{3}(x)\right)
\end{align*}
$$

Theorem 2.([1]) If $F: \widetilde{T}_{h} \rightarrow R$, then we get (1) the interpolation properties: $H_{1} F=F$, on $\quad \gamma_{2} \cup \gamma_{3}, H_{1} F^{(1,0)}=F^{(1,0)}$, on $\quad \gamma_{2} \cup \gamma_{3}$, $H_{2} F=F$, on $\gamma_{1} \cup \gamma_{3}, H_{2} F^{(0,1)}=F^{(0,1)}$, on $\gamma_{1} \cup \gamma_{3}$.
(2) the degree of exactness:

$$
\operatorname{dex}\left(H_{1}\right)=\operatorname{dex}\left(H_{2}\right)=2
$$

Proof. (1) $\left(H_{1} F\right)\left(g_{2}(y), y\right)=F\left(g_{2}(y), y\right)$,
$\left(H_{1} F\right)\left(g_{3}(y), y\right)=F\left(g_{3}(y), y\right)$, $\left(H_{1} F\right)^{(1,0)}(x, y)=$

$$
\frac{6\left[x-g_{3}(y)\right]\left[g_{2}(y)-x\right]}{\left[g_{2}(y)-g_{3}(y)\right]^{3}} \cdot F\left(g_{2}(y), y\right)
$$

$$
+\frac{6\left[x-g_{2}(y)\right]\left[g_{3}(y)-x\right]}{\left[g_{3}(y)-g_{2}(y)\right]^{3}} \cdot F\left(g_{3}(y), y\right)
$$

$$
+\frac{\left[x-g_{3}(y)\right]\left[3 x-2 g_{2}(y)-g_{3}(y)\right]}{\left[g_{2}(y)-g_{3}(y)\right]^{2}}
$$

$$
F^{(1,0)}\left(g_{2}(y), y\right)
$$

$$
+\frac{\left[x-g_{2}(y)\right]\left[3 x-2 g_{3}(y)-g_{2}(y)\right]}{\left[g_{3}(y)-g_{2}(y)\right]^{2}} .
$$

$$
F^{(1,0)}\left(g_{3}(y), y\right)
$$

We have:
$\left(H_{1} F\right)^{(1,0)}\left(g_{2}(y), y\right)=F^{(1,0)}\left(g_{2}(y), y\right)$, $\left(H_{1} F\right)^{(1,0)}\left(g_{3}(y), y\right)=F^{(1,0)}\left(g_{3}(y), y\right)$.
Also for the interpolation properties of H_{2}.

So, it follows that $\operatorname{dex}\left(B_{1}\right)=1$. Similar for $\operatorname{dex}\left(B_{2}\right)=1$.
(2) We obtain $H_{1} e_{i j}=e_{i j}$ for $i, j<2$ and $H_{1} e_{30} \neq e_{30}$, where $e_{i j}(x, y)=x^{i} y^{j}$. So, it follows that $\operatorname{dex}\left(H_{1}\right)=2$. Similar for $\operatorname{dex}\left(H_{2}\right)=2$.

2.2. Birkhoff-type operators

We give some examples of operators which interpolate the given function $F: \widetilde{T}_{h} \rightarrow R$ on a side of triangle, respectively, its partial derivatives on the others side.
We suppose that the function $F: \widetilde{T}_{h} \rightarrow R$ has the partial derivatives $F^{(0,1)}$ on γ_{3} and γ_{1} and $F^{(1,0)}$ on γ_{3}.
We consider the Birkhoff-type operators B_{1} and B_{2} defined by

$$
\begin{align*}
\left(B_{1} F\right)(x, y) & =F\left(g_{2}(y), y\right) \\
& +\left(x-g_{2}(y)\right) F^{(1,0)}\left(g_{3}(y), y\right) \tag{5}\\
\left(B_{2} F\right)(x, y) & =F\left(x, f_{1}(x)\right) \\
& +\left(y-f_{1}(x)\right) F^{(0,1)}\left(x, f_{3}(x)\right) \tag{6}
\end{align*}
$$

Theorem 3.([1]) If $F: \widetilde{T}_{h} \rightarrow R$, then we get (1) the interpolation properties: $B_{1} F=F$ on $\gamma_{2},\left(B_{1} F\right)^{(1,0)}=F^{(1,0)}$ on $\gamma_{3}, B_{2} F=F$ on γ_{1}, $\left(B_{2} F\right)^{(0,1)}=F^{(0,1)}$ on γ_{3}.
(2) the degree of exactness:
$\operatorname{dex}\left(B_{1}\right)=\operatorname{dex}\left(B_{2}\right)=1$.
Proof. (1) $\left(B_{1} F\right)\left(g_{2}(y), y\right)=F\left(g_{2}(y), y\right)$,
$\left(B_{1} F\right)^{(1,0)}\left(g_{3}(y), y\right)=F^{(1,0)}\left(g_{3}(y), y\right)$,
$\left(B_{1} F\right)\left(x, f_{1}(x)\right)=F\left(x, f_{1}(x)\right)$,
$\left(B_{1} F\right)^{(0,1)}\left(x, f_{3}(x)\right)=F^{(0,1)}\left(x, f_{3}(x)\right)$.
(2) $B_{1} e_{i j}=e_{i j}$ for $i, j \leq 1$ and
$B_{1} e_{20} \neq e_{20}$, where $e_{i j}(x, y)=x^{i} y^{j}$.

3. Cheney-Sharma type operators

The Cheney-Sharma type operators on a triangle with curved sides are extension of the Cheney-Sharma type operators of
second type, given by E.W.Cheney and A.Sharma in [6].

Let $m \in N$ and β a nonnegative parameter. The Cheney-Sharma operators of second kind $Q_{m}: C([0,1]) \rightarrow C([0,1])$, introduced in [6], are given by

$$
\begin{equation*}
\left(Q_{m} f\right)(x)=\sum_{i=0}^{m} q_{m, i}(x) f\left(\frac{i}{m}\right) \tag{7}
\end{equation*}
$$

$q_{m, j}(x)=$
$\binom{m}{i} \frac{x(x+i \beta)^{i-1}(1-x)[1-x+(m-i) \beta]^{m-i-1}}{(1+m \beta)^{m-1}}$

For $m, n \in N, \alpha, \beta \in R_{+}$, we consider the following extensions of the Cheney-Sharma operator given in (7):

Let F be a real-valued function defined on \widetilde{T}_{h} and $\left(x, f_{1}(x)\right),\left(x, f_{3}(x)\right)$, respectively, $\left(g_{2}(y), y\right),\left(g_{3}(y), y\right)$ the points in which the parallel lines to the coordinates axes, passing through the point $(x, y) \in \widetilde{T}_{h}$, intersect the sides γ_{1}, γ_{2} and γ_{3} (see Figure 1). We consider the uniform partitions of the intervals $\left[g_{2}(y), g_{3}(y)\right]$ and $\left[f_{1}(x), f_{3}(x)\right], x, y \in[0, h]:$
$\Delta_{m}^{x}=\left\{\left.g_{2}(y)+i \frac{g_{3}(y)-g_{2}(y)}{m} \right\rvert\, i=\overline{0, m}\right\}$,
respectively,
$\Delta_{n}^{y}=\left\{\left.f_{1}(x)+j \frac{f_{3}(x)-f_{1}(x)}{n} \right\rvert\, j=\overline{0, n}\right\}$.
$q_{n, j}(x, y)=\binom{n}{j} \frac{\frac{y-f_{1}(x)}{f_{3}(x)-f_{1}(x)}\left(\frac{y-f_{1}(x)}{f_{3}(x)-f_{1}(x)}+j \alpha\right)}{(1+n \alpha)^{n-1}}$

$$
\begin{aligned}
& \left(Q_{m}^{x} F\right)(x, y)= \\
& \frac{1}{(1+m \beta)^{m-1}}\left\{\left[1-\frac{x-g_{2}(y)}{g_{3}(y)-g_{2}(y)}\right] .\right. \\
& {\left[1-\frac{x-g_{2}(y)}{g_{3}(y)-g_{2}(y)}+m \beta\right]^{m-1} \cdot F\left(g_{2}(y), y\right)} \\
& +\frac{x-g_{2}(y)}{g_{3}(y)-g_{2}(y)}\left[1-\frac{x-g_{2}(y)}{g_{3}(y)-g_{2}(y)}\right] . \\
& \sum_{i=0}^{m}\binom{m}{i}\left(\frac{x-g_{2}(y)}{g_{3}(y)-g_{2}(y)}+i \beta\right)^{i-1} \cdot \\
& {\left[1-\frac{x-g_{2}(y)}{g_{3}(y)-g_{2}(y)}+(m-i) \beta\right]^{m-i-1} .} \\
& F\left(g_{2}(y)+i \frac{g_{3}(y)-g_{2}(y)}{m}, y\right) \\
& +\frac{x-g_{2}(y)}{g_{3}(y)-g_{2}(y)} \cdot\left[\frac{x-g_{2}(y)}{g_{3}(y)-g_{2}(y)}+m \beta\right]^{m-1} . \\
& \left.F\left(g_{3}(y), y\right)\right\}
\end{aligned}
$$

So,

$$
\begin{aligned}
& \left(Q_{m}^{x} F\right)\left(g_{2}(y), y\right)=F\left(g_{2}(y), y\right), \\
& \left(Q_{m}^{x} F\right)\left(g_{3}(y), y\right)=F\left(g_{3}(y), y\right) .
\end{aligned}
$$

The 2) is proved in a similar way with 1). The proof for 3) and 4) follows by the property $\operatorname{dex}\left(Q_{m}\right)=1$ (proved in [6]).

Let $P_{m n}^{1}=Q_{m}^{x} Q_{n}^{y}$, respectively, $P_{n m}^{2}=Q_{n}^{y} Q_{m}^{x}$ be the product of the operators Q_{m}^{x} and Q_{n}^{y}. We have

$$
\begin{aligned}
&\left(P_{m n}^{1} F\right)(x, y)=\sum_{i=0}^{m} \sum_{j=0}^{n} q_{m, i}(x, y) q_{n, j}\left(x_{i}, y\right) . \\
& F\left(x_{i}, f_{i}\left(x_{i}\right)+j \frac{f_{3}\left(x_{i}\right)-f_{1}\left(x_{i}\right)}{n}\right), \\
& x_{i}=g_{2}(y)+i \frac{g_{3}(y)-g_{2}(y)}{m},
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(P_{n m}^{2} F\right)(x, y)=\sum_{i=0}^{m} \sum_{j=0}^{n} q_{m, i}\left(x, y_{j}\right) q_{n, j}(x, y) . \\
& F\left(g_{2}\left(y_{j}\right)+i \frac{g_{3}\left(y_{j}\right)-g_{2}\left(y_{j}\right)}{m}, y_{j}\right), \\
& y_{j}=f_{1}(y)+j \frac{f_{3}(x)-f_{1}(x)}{n} .
\end{aligned}
$$

Theorem 5.([2]) If F is a real-valued function defined on \widetilde{T}_{h} then:

1) $\left(P_{m n}^{1} F\right)\left(V_{3}\right)=F\left(V_{3}\right),\left(P_{m n}^{1} F\right)=F$, on Γ_{3}
2) $\left(P_{n m}^{2} F\right)\left(V_{3}\right)=F\left(V_{3}\right),\left(P_{n m}^{2} F\right)=F$, on Γ_{3}

Proof. The proof follows from the properties:
$\left(P_{m n}^{1} F\right)(x, 0)=\left(Q_{m}^{x} F\right)(x, 0)$,
$\left(P_{m n}^{1} F\right)(0, y)=\left(Q_{n}^{y} F\right)(0, y)$,
$\left(P_{m n}^{1} F\right)\left(x, f_{3}(x)\right)=F\left(x, f_{3}(x)\right), x, y \in[0, h]$
and
$\left(P_{n m}^{2} F\right)(x, 0)=\left(Q_{m}^{x} F\right)(x, 0)$,
$\left(P_{n m}^{2} F\right)(0, y)=\left(Q_{n}^{y} F\right)(0, y)$,
$\left(P_{n m}^{2} F\right)\left(g_{3}(x), y\right)=F\left(g_{3}(y), y\right), x, y \in[0, h]$
which can be verified by a straightforward computation.

We consider the Boolean sums of the operators Q_{m}^{x} and Q_{n}^{y}, i.e.,
$S_{m n}^{1}=Q_{m}^{x} \oplus Q_{n}^{y}=Q_{m}^{x}+Q_{n}^{y}-Q_{m}^{x} Q_{n}^{y}$,
respectively

$$
S_{n m}^{2}=Q_{n}^{y} \oplus Q_{m}^{x}=Q_{n}^{y}+Q_{m}^{x}-Q_{n}^{y} Q_{m}^{x}
$$

Theorem 6.([2]) If F is a real-valued function defined on \widetilde{T}_{h} then:

$$
\left.S_{m n}^{1}\right|_{\partial \widetilde{\partial}}=\left.F\right|_{\partial \widetilde{T}}
$$

and

$$
\begin{aligned}
& \left(S_{m n}^{1} F\right)\left(x, f_{1}(x)\right)=\left(Q_{m}^{x} F\right)\left(x, f_{1}(x)\right), \\
& \left(S_{m n}^{1} F\right)\left(g_{2}(y), y\right)=\left(Q_{n}^{y} F\right)\left(g_{2}(y), y\right),
\end{aligned}
$$

$\left.S_{n m}^{2}\right|_{\partial \tilde{T}}=\left.F\right|_{\partial \tilde{T}}$.

Proof.

As
$\left(S_{m n}^{1} F\right)\left(x, f_{3}(x)\right)=F\left(x, f_{3}(x)\right)$,
the proof follows.

References

[1] Baboș, A., Interpolation operators on a triangle with two and three curved edges, Creat. Math. Inform. , No. 2, pp. 135-142, 2011.
[2] Baboș, A., Cheney-Sharma type operators on a triangle with two and three curved edges, Ukrainian Mathematical Journal (accepted).
[3] Barnhill, R.E., Birkhoff, G., Gordon, W.J., Smooth interpolation in triangles, J. Approximation Theory, 8, pp. 114-128, 1973.
[4] Barnhill, R.E., Gregory, J.A., Polynomial interpolation to boundary data on triangles, Math. Comp., 29, pp. 726-735, 1975.
[5] Cătinaș, T., Blaga, P., Coman, Gh., Interpolation operators on some triangles with curved sides, Analele Științifice ale Universității "Al. I. Cuza" din Iași (S.N.) Matematică, Tomul LX, pp. 450-487, 2014.
[6] Cheney, E.W., Sharma, A., On a generalization on Bernstein polynomials, Analele Riv. Mat. Univ. Parma, 5, pp. 77-84, 1964
[7] Coman, Gh., Cătinaş, T., Interpolation operators on a triangle with one curved side, BIT, 50, pp. 243-267, 2010.
[8] Blaga, P., Cătinaș, T., Coman, Gh., Bernstein-type operators on a triangles with one curved side, Mediterr. J. Math., 9, pp. 833-845, 2012.
[9] Cătinaș, T., Extension of some positive and linear operators to domain with curved sides, MATEC Web of Conferences.,68, 16006, 2016.
[10] Gregory, J.A, A blending function interpolant for triangles, Multivariate Approximation, pp. 279-287, 1978.

