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Abstract: This paper contains a survey regarding interpolation and Cheney-Sharma type  operators 
defined on a triangle with all curved sides; we considers as well some of the product and Boolean sum 
operators. We study their interpolation properties and the degree of exactness. 
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1. Introduction 
The aim of this survey is to present some 
interpolation and Cheney-Sharma type 
operators for functions defined on a 
triangle with all curved side (see [1], 
[2]). They came as an extension of the 
corresponding operators for functions 
defined on triangles with all straight 
sides (see, e.g.,[3], [4], [9] ).  
We study these operators especially from 
the theoretical point of view.  
We study two main aspects of the 
constructed operators: the interpolation 
properties and  the degree of exactness. 
Recall that dex(P)=r (where P is an 
interpolation operator) if P f = f, for rPf ∈ , 
and there exists 1+∈ rPg  such that gPg ≠ , 
where mP  denote the space of the 
polynomials in two variables of global 
degree at most m.  
 
 
 
 
 
 

In Section 2 we study Lagrange, Hermite 
and Birkhoff interpolation operators and in 
Section 3 we present some Cheney-Sharma 
type operators together with their product 
and Boolean sum for the triangle with all 
curved sides. 
Given h > 0, denote by hT~  the triangle 
having the vertices  )0,(),,0( 21 hVhV ==
and )0,0(3 =V , and the three curved sides 

21,γγ (along the coordinates axes) and 3γ
(opposite to the vertex 3V ). We define 1γ by 

))(,( 1 xfx  with ,0)(,0)()0( 111 ≤== xfhff
for ];,0[ hx∈ 2γ defined by ),),(( 2 yyg  with 

,0)(,0)()0( 222 ≤== yghgg for ],0[ hy∈
and 3γ  defined by one-to-one functions  3f
and 3g , where 3g  is the inverse of the 
function 3f , i.e., )(3 xfy = and )(3 ygx = , 
with ],0[, hyx ∈  and ,)0()0( 33 hgf ==  

,+∈Rh (see Figure 1). 
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Figure 1. Triangle hT~

 
 
2. Interpolation operators  
2.1. Lagrange-type operators 
Suppose  that F is a real-valued function 
defined on hT~  . Let 1L  and 2L  be the 
interpolation operators defined by  
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Theorem 1.([1]) If :F hT~ R→ , then we get 
(1) the interpolation properties: ,1 FFL = on 

,32 γγ ∪ ,2 FFL = on 31 γγ ∪ . 
(2) the degree of exactness: ,1)(dex =iL  

2,1=i . 
Proof. (1) )),(()),()(( 221 yygFyygFL = , 

),),(()),()(( 331 yygFyygFL =
))(,)(( 12 xfxFL )),(,( 1 xfxF=   

 
))(,)(( 32 xfxFL )).(,( 3 xfxF=   

So, the interpolation properties are verified. 
(2) ijij eeL =1 for 1,,, ≤∈ jiNji and  

20201 eeL ≠ , where ji
ij yxyxe =),( . So. It 

follows that 1)(dex =iL . 
 
2.2. Hermite-type operators 
Suppose that F has the partial derivatives 

)0,1(F on 2γ and 3γ  respectively )1,0(F on 1γ
and 3γ . We consider the operators 1H  and 

2H  defined by  
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Theorem 2.([1]) If :F hT~ R→ , then we get 
(1) the interpolation properties: ,1 FFH =
on ,32 γγ ∪ ,)0,1()0,1(

1 FFH = on ,32 γγ ∪

,2 FFH = on 31 γγ ∪ , ,)1,0()1,0(
2 FFH =  on 

31 γγ ∪ . 
(2) the degree of exactness:  

.2)(dex)(dex 21 == HH  
Proof. (1) )),(()),()(( 221 yygFyygFH = , 

)),(()),()(( 331 yygFyygFH = , 
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We have:  
),),(()),(()( 2

)0,1(
2

)0,1(
1 yygFyygFH =  

).),(()),(()( 3
)0,1(

3
)0,1(

1 yygFyygFH =  
Also for the interpolation properties of 2H . 
 
 

(2) We obtain ijij eeH =1 for 2, <ji  and  

,30301 eeH ≠ where ji
ij yxyxe =),( . So, it 

follows that 2)(dex 1 =H . Similar for  
2)(dex 2 =H . 

 
2.2. Birkhoff-type operators 
We give some examples of operators which 
interpolate the given function :F hT~ R→  
 on a side of triangle, respectively, its 
partial derivatives on the others side. 
We suppose that the function :F hT~  R→

has the partial derivatives )1,0(F on 3γ and 

1γ  and )0,1(F  on 3γ . 
We consider the Birkhoff-type operators 1B
and 2B  defined by  
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Theorem 3.([1]) If :F hT~ R→ , then we get 
(1) the interpolation properties: FFB =1 on 

,2γ
)0,1()0,1(

1 )( FFB = on ,3γ FFB =2 on 1γ , 
)1,0()1,0(

2 )( FFB =  on 3γ . 
(2) the degree of exactness:  

.1)(dex)(dex 21 == BB  
Proof. (1) )),(()),()(( 221 yygFyygFB = , 

),),(()),(()( 3
)0,1(

3
)0,1(

1 yygFyygFB =  
))(,())(,)(( 111 xfxFxfxFB = , 

)).(,())(,()( 3
)1,0(

3
)1,0(

1 xfxFxfxFB =  
(2) ijij eeB =1  for 1, ≤ji  and  

,20201 eeB ≠ where ji
ij yxyxe =),( .  

 

So, it follows that 1)(dex 1 =B . Similar for  
1)(dex 2 =B . 

 
 
 

3. Cheney-Sharma type operators  
The Cheney-Sharma type operators on a 
triangle with curved sides are extension of 
the Cheney-Sharma type operators of 
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second type, given by E.W.Cheney and 
A.Sharma in [6].  
Let  Nm∈  and β  a nonnegative 
parameter. The Cheney-Sharma operators 
of second kind ])1,0([])1,0([: CCQm → , 
introduced in [6], are given by  
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For ,,,, +∈∈ RNnm βα we consider the 
following extensions of the Cheney-Sharma 
operator given in (7): 
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respectively, 
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Let F be a real-valued function defined on 
hT~ and ))(,()),(,( 31 xfxxfx , respectively,  

)),((),),(( 32 yygyyg  the points in which 
the parallel lines to the coordinates axes, 
passing through the point hTyx ~),( ∈ , 
intersect the sides 21,γγ  and 3γ  (see Figure 
1). We consider the uniform partitions of 
the intervals )](),([ 32 ygyg  and  

:],0[,)],(),([ 31 hyxxfxf ∈  
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Theorem 4.([2]) If F is a real-valued 
function defined on hT~  then  

(1) FFQx
m = on 32 γγ ∪ , 

(2) FFQ y
n = on 31 γγ ∪ , 

(3) NjiyxyxeQ ji
ij

y
n ∈== ;1,0,),)(( , 

(4) .1,0,,),)(( =∈= jNiyxyxeQ ji
ij

y
n  

Proof. 1) We write  
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Theorem 5.([2]) If F is a real-valued 
function defined on hT~  then: 
1)  3

1
33

1 on   ,) (  ),())( ( Γ== FFPVFVFP mnmn  
2) 3

2
33

2 on   ,) (  ),())( ( Γ== FFPVFVFP nmnm  
 

Proof. The proof follows from the 
properties: 
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The 2) is proved in a similar way with 1). 
The proof for 3) and 4) follows by the 
property 1)( =mQdex  (proved in [6]). 
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be the product of the operators x
mQ  and y

nQ . 
We have  
 

( )

,)()()(                   

,)()()(,                    

),(),(),(

23
2

13

,
0 0

,
1

m
ygygiygx

n
xfxfjxfxF

yxqyxqyxFP

i

ii
iii

ijn

m

i

n

j
immn

−
+=







 −

+

⋅= ∑∑
= =

 

and  

 
which can be verified by a straightforward 
computation. 
 
We consider the Boolean sums of the 
operators x

mQ  and y
nQ , i.e.,  
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Theorem 6.([2]) If F is a real-valued 
function defined on hT~  then: 
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and  
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As 
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the proof follows. 
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