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Abstract: This paper contains a survey regarding interpolation and Cheney-Sharma type operators
defined on a triangle with all curved sides, we considers as well some of the product and Boolean sum
operators. We study their interpolation properties and the degree of exactness.
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1. Introduction

The aim of this survey is to present some
interpolation and Cheney-Sharma type
operators for functions defined on a
triangle with all curved side (see [1],
[2]). They came as an extension of the
corresponding operators for functions
defined on triangles with all straight
sides (see, e.g.,[3], [4], [9] ).

We study these operators especially from
the theoretical point of view.

We study two main aspects of the
constructed operators: the interpolation
properties and the degree of exactness.
Recall that dex(P)=r (where P 1is an
interpolation operator) if P f=f, for f € P,
and there exists g € P, such that Pg# g,
where P

m

denote the space of the

polynomials in two variables of global
degree at most m.
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In Section 2 we study Lagrange, Hermite
and Birkhoff interpolation operators and in
Section 3 we present some Cheney-Sharma
type operators together with their product
and Boolean sum for the triangle with all
curved sides.

Given 7 > 0, denote by 7, the triangle
having the vertices V, =(0,4),V, =(h,0)
and V; =(0,0), and the three curved sides
71,7, (along the coordinates axes) and y,
(opposite to the vertex V). We define y,by
(x, fi(x)) with f,(0) = f,(h) =0, f,(x) <0,
for x €[0, h]; y, defined by (g,(y),»), with
8:(0)=g,(h) =0,g,(y)<0,for ye[0,7]
and y, defined by one-to-one functions f;
and g,, where g, is the inverse of the
function f;, e, y= f;(x)and x=g,(»),
with x,y €[0,h] and £;(0) = g,(0) = A,
heR,,(see Figure 1).
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Figure 1. Triangle fh

2. Interpolation operators
2.1. Lagrange-type operators
Suppose that F is a real-valued function

defined on 7, . Let L, and L, be the
interpolation operators defined by

x—g5(»)

LF)(x,y)=
) = - e. )

F(g,(»),»)
(1)

x—g,(») F
a0 -g.() &)

LF)(x, ) = Y=
L =2 @

N y = fi(x)
£ - fi)

EF(x, /(%)
)
F(x, f3(x))

Theorem 1.([1]) If F:7, — R, then we get
(1) the interpolation properties: L F' = F,on
7,975, LF =F,on y, Uys.

(2) the degree of exactness: dex(L,) =1,
i=12.

Proof. (1) (L,F)(g,(¥),y) = F(g,(¥), 7).
(LiF)(g:(0),¥) = F(g5(), ),

(LF)(x, f1(x)) = F(x, f,(x)),

(L F)(x, f5(x) = F(x, f5(x)).

So, the interpolation properties are verified.
(2) Le; =¢;for i,jeN,i,j<land

Liey, # ey, where e, (x,y)=x"y’. So. It
follows that dex(L;)=1.

2.2. Hermite-type operators
Suppose that F' has the partial derivatives

F"on y,and y, respectively F*"on y,
and y,. We consider the operators /, and
H, defined by

[x—g,(VI’[3g,(») — g (») — 2x]
HF)(x,y)= ] .
(HF).) [2:()— g5()]
[x—g,(WI'[3g;(») — &, () — 2x]
F(g,(»), 3 :
(£:0)7)+ [g5(¥)— g, (V)]

[x—g,(MIlx- g,
F(g,(»), e
(k) [g,(»)—g;(»)]

0.0 [x—g:WIx—g, T’
(1,0) , , 3 2 : . 3
(&) [&:(») g, (»)] ©

FU(g,(1),)
and



[y = /LI [Bf(x)— f,(x) = 2y]
/1) = f5(0)F

[y - A@FBA®) - f1(x)-2y]
£, ()= £,()T

[y - A@Iy - )

[/, ()= £, (0

- £,y =A@

[f; ()= £/,(0))

(H,F)(x,y) =

E(x, fi(x))+

F(x, f3(x0)+

FO(x, f,(x))+

)
FOD(x, f3(x)

Theorem 2.([1]) If F:7, — R, then we get
(1) the interpolation properties: H,F =F,
on y,uUy, HF" =F% on y, Uy,
H,F=F,on y,Uy,, HF*"=F%  on
Nn\Y7rs.
(2) the degree of exactness:
dex(H,)=dex(H,)=2.
Proof. (1) (H,F)(g,(),y) = F(g,(»),»),
(H,F)(g5(¥),y) = F(g5(1), )
(H F)"" (x,y)=
6[x — g, (VI (y)3— . g (.7, )

[£.(»)—g5(V)]
L Ox— g, ()llg;(») — x]

[2:(») g, (T
+ [x-gWIBx-2g,(») - g )]
[2,(»)~ &, (T’
F(g,(3),)
L8 IBx—28,(0) — 8, (]
[2:(») ~ g, (]I

F(g4(1), ).
We have:
(H,F)" (g,(»),») = F""(g,(»), ),
(H,F)*(g,(»), ) = F""(g;(), ).
Also for the interpolation properties of H, .

F(g5(»),»)

So, it follows that dex(B,) =1. Similar for
dex(B,)=1.
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(2) We obtain H,e; = ¢, for i,j <2 and

H ey, # ey, where e, (x,y) = x'y’. So, it
follows that dex(/,) =2. Similar for
dex(H,)=2.

2.2. Birkhoff-type operators
We give some examples of operators which

interpolate the given function F:7, — R

on a side of triangle, respectively, its
partial derivatives on the others side.

We suppose that the function F:7, — R
has the partial derivatives F*"on y,and
7, and F"” on y,.

We consider the Birkhoff-type operators B,
and B, defined by

(BF)(x,y)=F(g,(»),»)

5
+(x =g, (MF(g,(»).») ®

(B,F)(x,y) = F(x, f,(x))

6
+(y = AONF O (x, £,(x)) ©

Theorem 3.([1]) If F:7, — R, then we get
(1) the interpolation properties: B, F' = F on
V2, BF)™ =F™ony,, BF=Fon y,
(B,F)"" = F“" on y,.

(2) the degree of exactness:

dex(B,) =dex(B,) =1.

Proof. (1) (B/F)(g,(¥),y) = F(g,(¥),»),
(B.F)™(g5(»),3) = F""(g,(0), ),
(B F)(x, fi(x)) = F(x, f,(x)),

(B,F) ) (x, f3(x)) = F OV (x, f1(x)).

(2) Ble!./. =e; for i, j <1 and

— iy
Be,, # e,, where ¢, (x,y)=x"y’.

3. Cheney-Sharma type operators

The Cheney-Sharma type operators on a
triangle with curved sides are extension of
the Cheney-Sharma type operators of



second type, given by E.W.Cheney and
A.Sharma in [6].

Let meN and f
parameter. The Cheney-Sharma operators
of second kind Q, :C([0,1]) = C([0,1]),

introduced in [6], are given by

a nonnegative

©.109=3 0., 01[ L Y

qm,j (x) =

m\ x(x+if)" (1= x)[1 = x+(m—i) """
i (A+mp)"!

For m,ne N,a,f € R,,we consider the

following extensions of the Cheney-Sharma
operator given in (7):

Let F be a real-valued function defined on

T,and (x, f,(x)),(x, f,(x)) , respectively,

(g,(»),¥),(g5(»),y) the points in which
the parallel lines to the coordinates axes,

passing through the point (x,y) e]N“h,
intersect the sides y,,7, and y, (see Figure
1). We consider the uniform partitions of
the intervals [g,(»), g;(»)] and

£, (x), /5(x)],x, y €[0,A]:
A ={gz(y)ﬂ.&(y)—gz(y) ‘i:O,m},
m

respectively,

A, :{fl(x)+j—f3(x);fl(x)‘j:O,n}.

(Q"nF)(x) =
i 4, (X, VF (gz (V) +i M,y}

i=0

x=2,(») { x=2,(») “ﬁJ

(x,) = m)g,(y)-g, M\ &) -g,(»)

TnilB V)= (1+mpB)™

[1— x—g,(») Hl_ x-g,() Hm_i)ﬂ}m”
2;(»)—-g,(») g -g,(»)

respectively,

(O F)(x) =

iqn,,(x,yw(x,ﬁ(x)ww}

Jj=0 h

with

.{1_ y=£ix) }{1_ ¥ fix) +(n_j)a}"“,
f3() = fi(x) f3(x) = f(x)

Theorem 4.([2]) If F is a real-valued
function defined on 7, then

(1) O, F=Fon y, Uy,,
(2) Q)F =Fon y, Uys;,
(3) (QJe)(x,y)=x'y",i=0]L;jeN,

(4) (Q)e;)x,y)=x'y’,ieN,j=0,l.
Proof. 1) We write

y=A() ( Y= ”“j
N VACEAOIAGEIAC
q,,(xy)=| . =
Jj (I+na)
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(O, F)(x,y)=

1 -
(1+mpB)""

[1 _ x=g )
2;(»)-g,(»)
x—g, () [1 _
2 () -g,(»)

m(mJ{ x_gz(y) "
o\ Ng () —g,()
{1_ x—g, ()

g, () -g, ()

F[gz(y)nw,y]

x-g0) {
2;(»)—g,(»)
F(g,(»).))}

x—g () } _
g () -g,(»)

+mﬂ} F(g,(»),y)

x-g ) } _
2 -g,(»)

iﬂJ .

+(m—i),8} N .

mﬂ}-

x=g,(»)
2;(»)-g,(»)

So,

(O, F)g,(»),y)=F(g,(»),),
(0, F)g5(»),y)=F(g5(»),»).

The 2) is proved in a similar way with 1).
The proof for 3) and 4) follows by the

property dex(Q, ) =1 (proved in [6]).

Let P =QQ’ respectively, P’ =Q’Q!
be the product of the operators QO and Q.
We have

(PLFYx ) =3 4,604, (5 1)-

F(xi’jfi(xi)+jﬂ(xi);ﬂ(xi)j’

_ .28 -8 )
X, =g,(y)+i " ,

and
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m n

(P,;F)(x,y) = qum,i(xoyj)qn,j(xay)'

i=0 j=0
&) -g ;)
F(gz(yj)+l e m = ,y,- s

v, = A+ R0,

Theorem 5.([2]) If F is a real-valued
function defined on 7, then:

1) (P, F)V})=F(V,), (B, F)=F, onT,
2) (P, F)(V}) = F(V,), (P}, F)=F, onT,

Proof. The proof follows from the

properties:

(B, F)(x,0)=(Q,, F)(x,0),
(B, F)(0,y)= (0, F)O0,y),
(P, F)(x, f3(x)) = F(x, f3(x)),x, y €[0, 4]

and

(P, F)(x,0) = (Q;, F)(x,0),

(P, F)(0, ) =(Q; F)O,y),

(P, F)(g5(x),¥) = F(g5(»), »),x,y €[0,h]

which can be verified by a straightforward
computation.

We consider the Boolean of the

operators Q" and Q7 i.e.,

sums

S0 =00 ®©0, =0, +0) - 0,0/,
respectively
Seu=0,90,=0,+0,-0,0,

Theorem 6.([2]) If F is a real-valued
function defined on 7, then:

1
Smn

oF =F‘af



and (S, F)x, £,(2)) = (O, F)(x, fi(x)),

. =F

or

oF - (Sh, F)(2,(3),3) = (0, F)(g,(»), ),

nm

Proof. (S), F)(x, f,(x)) = F(x, f,(x)),

As the proof follows.
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