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Abstract: The scattering of electromagnetic (EM) waves, emitted by a monostatic radar, from two – 
dimensional (2D) rough fractal surfaces is examined by using the Kirchhoff approximation. We 
examine the way that the level of roughness of the fractal surface affects the backscattered EM wave 
captured by a radar as a function of frequency (therefore, a ‘spectral method’) and whether the 
roughness of the surface can be estimated from these radar measurements. The backscattering 
coefficient is calculated for a number of radar frequencies and for different values of the surface 
fractal dimension. It is found  that the values of the slopes between the main lobe and the first 
sidelobes of the backscattering coefficient as a function of the wave number (frequency) of the incident 
EM waves increase with the surface fractal dimension. Therefore, we conclude that the magnitude of 
the above slopes provides a reliable method for the classification of the rough fractal surfaces. 
Furthermore, concerning three – dimensional (3D) fractal surfaces, investigations similar to the 
above are already performed by the authors and will be presented during the Conference. The above 
are also investigated in the presence of electronic noise in the radar receiver (effect of SNR values in 
the above proposed technique). 
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1. Introduction
The scattering of electromagnetic (EM) 
waves from rough surfaces has been for 
decades a very interesting subject for 
scientific investigation. In many cases the 
main purpose of this research is the 
characterization of rough surfaces from 
scattered EM wave data for remote sensing 
applications, in the microwave or optical 
regime [1]–[14]. These surfaces can be 
modelled mathematically with deterministic 
or random functions [1]–[3]. However, 
introducing the fractal geometry, these 
surfaces can be described in a more detailed 
way in multiscale [1], [3], [8]. 
In this paper the scattering of EM waves from 
rough surfaces using the Kirchhoff 
approximation is examined [1], [2]. In 
particular, in Section II the mathematical 

fundamentals for scattering of EM waves 
from fractal surfaces are summarized [1]–[3].  
In Section III our simulation results for the 
characterization of the rough fractal surfaces 
from backscattered EM wave data are 
presented. Finally, conclusions and future 
related research of ours are described in 
Section IV.  

2. Problem Geometry and Mathematical
Formulation 
The geometry of the problem is shown in 
Fig. 1. An incident EM plane wave 
illuminates a one–dimensional rough fractal 
surface extending from x = – L to x =  L, as 
shown in Fig. 1.The angle of incidence of 
the EM wave is θi with respect to the 
vertical z axis, where the incident and 
scattered wave vectors are denoted by ki 
and ks respectively [1]..
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Figure 1: Geometry of the rough surface scattering problem 

 
Following [1], and in order to describe the 
surface roughness, a one-dimensional 
fractal function is used [1], [3], [4]. This 
fractal function is described by the 
following equation:  
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where D (1< D < 2) is the fractal dimension 
of fractal surface [1], K0 = 2π/Λ0 is the 
fundamental spatial wavenumber of the 
fractal surface, Λ0 is the corresponding 
fundamental spatial wavelength, b (where 
b>1) is the spatial frequency scaling 
parameter, �n are arbitrary phases and N is 
the number of tones describing the surface. 
The amplitude control factor C is given by: 
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so that surface function (1) has standard 
deviation (rms height) equal to σ [1].  It can 
be easily realized from (1) above, that when 
the surface fractal dimension D increases 
from value 1 to value 2, the surface 
roughness also increases [1], [3].  
In order to calculate the scattered field from 
a rough fractal surface, described in Fig. 1, 
the Kirchhoff approximation is used, for 
which it is assumed that the wavelength of 
the incident EM wave is small compared to 
the local radius of curvature of the surface 
roughness [1]–[3].  Furthermore, for the 
plane EM wave incidence of Fig. 1, in [1] it 
is shown that the scattered electric field is 
given by the following equation: 

dxxfixiqfp
R
ikRikLE rzx

L

L
rsc )](exp[)(

2
)exp(

0

0 υυ
π

+−′= ∫
−

 (3) 
where: 
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In the above (3)–(7), R0 is the distance from 
the observation point (monostatic radar) to 
the origin, coinciding with the ‘source 
surface point’, k is the wavenumber of the 
incident EM wave (k=2πf/c, where f is the 
frequency of the incident EM wave), R is 
the Fresnel reflection coefficient of the 
tangential plane at the point of interest, θs is 
the direction of the observer and r  is the 
derivative with respect to its argument x. 
For simplicity we assume a perfectly 
conducting rough surface, in which the 
Fresnel reflection coefficient is given by 
(R+ = 1, R– = 1), where the superscript + 
indicates the parallel (vertical) polarization 
and the superscript – denotes the 
perpendicular (horizontal) polarization, 
respectively [1], [2]. 

f ′

In the case of a smooth, perfectly 
conducting surface, the scattered field for 
horizontal polarization can be found in the 
direction of specular reflection, namely for 

  [1], [2]: 
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Normalizing the value of the scattered field 
Esc of (3) by the value provided by (8), the 
scattering coefficient γ is calculated by [1]:   
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The first term in the parenthesis provides 
the most significant contribution to the 
scattering process, while the second term 
represents an edge effect, which can be 
considered negligible when L >> λ, as 
assumed in this paper. 
 
3. Simulation Results 
We concentrate on the backscattering of 
EM waves from rough fractal surfaces (e.g. 
monostatic SAR radar [9], [10]), i.e. θs= –θi 
at Fig. 1 and (4)–(7) and we plot the 
magnitude of the backscattering coefficient 
|γ(k)|. The surface is simulated as a zero-
mean, band-limited fractal function, as in 
(1), and its roughness is controlled by the 
fractal dimension D [1], [3]. The 
backscattering coefficient γ was calculated 
from (9) for a number of frequencies,

, where  and M 
is the number of frequencies, fo is the 
carrier frequency, Δf = BW/M is the 
frequency step and BW is the bandwidth of 
the radar, i.e. ‘stepped – frequency’ 
transmitted radar waveform [9], [10].  
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3.1 Noiseless Receiver 
In Fig. 2, below, the plots of |γ(k)| for angle 
of incidence θi =30o are shown, while the 
values of the other parameters are 
BW=1GHz, f0 = 10 GHz and M = 200 (i.e. 
200 frequency steps in radar emitted 
stepped-frequency waveform). 
As far as the simulated fractal surface is 
concerned, the frequency scaling parameter 
was set equal to b=1.8 while the number of 
tones was set equal to N=6 [1]. Moreover, 
the rms height of the surface was set equal 

to σ = 0.05λ, Λ0 = 10λ = 0.3 m and the 
illuminated length of the rough surface 
along x-direction (‘patch size’) was chosen 
to 2L = 80λ (Fig. 1) in all calculations (so as 
2L>>Λ0  and kσ <1), where λ = c/f0 [1], [18].   
Furthermore, at the top left corner of each 
figure a sample plot of the roughness fractal 
function  (1) is also shown.  )(xfr

The roughness of the simulated fractal 
surface (the fractal dimension D) is 
increasing per image, e.g. D = 1.05  (Fig. 
2), D = 1.30 (Fig. 3) and so on. 
By observing Fig. 2 the following 
conclusion is made: as the value of the 
parameter D increases, i.e. as the roughness 
of the fractal surface increases, the 
emerging slope between the main lobe and 
the side lobes also increases. 
Therefore, it becomes clear in our 
simulations that the roughness of the fractal 
surface can be characterized by the mean 
slope between the main lobe of function 
|γ(k)| and the two sidelobes, adjacent to the 
main lobe (see plots of Fig. 2). 
If the radar bandwidth decreases, then the 
information provided by the backscattered 
signal-wavenumber plots, of the type 
provided above, is not always enough in 
order to draw safe conclusions regarding 
the roughness (fractal dimension) of the 
surface. In other words, the bandwidth for 
our proposed method of surface 
characterization from backscattered radar 
data must be sufficiently large (at least 5% 
of the carrier frequency f0), in order for the 
information contained in the plots of Figs. 2 
to be observable and measurable. 
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Figure 2: Magnitude of backscattering coefficient |γ(k)|, as a function of the wavenumber k, for D = 
1.05(up left), D = 1.30(up right), D = 1.55(down left), D = 1.80(down right) 

In order to study further the relation 
between the surface fractal dimension D 
and the slopes of the scattering coefficient 
|γ(k)|, some additional simulations have 

been performed (details of it can be found 
in [14]). This ends up with Fig. 3 results, as 
it will be also explained in the Conference 
[14] 

 

 
 

Figure 3: Left: ‘Average slope’ of the |γ(k)| vs. value of the surface fractal dimension D.  Right: 
Fractal dimension D vs. ‘slope calculation’ of |γ(k)| (simulated values and fitted curve) 

 
3.2 Noisy Receiver 
In order to examine the applicability of our 
method in an actual noisy radar 
environment, we add AWGN noise in γ(k). 
We use (10), below, for calculating the 
power level P(γ) of signal γ(k), and (11) for 
calculating the noise level N(γ) for a given 
Signal to Noise Ratio (SNR) value. 
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The γnoisy in (12) represents a γ(k) signal that 
exhibits a certain SNR value using a 

 D Slope Dcalc  Dcalc 
lower D Dcalc

upper
1.05 0.0000 none  1.06 1.05 1.16 
1.15 0.0000 none  1.07 1.15 1.17
1.25 0.0002 1.19  1.21 1.25 1.31 
1.35 0.0011 1.33  1.27 1.35 1.39
1.45 0.0031 1.45  1.40 1.45 1.50
1.55 0.0065 1.56  1.50 1.55 1.59 
1.65 0.0112 1.66  1.61 1.65 1.70
1.75 0.0183 1.76  1.71 1.75 1.81 
1.85 0.0274 1.84  1.80 1.85 1.89
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Gaussian distribution with specific noise 
level. 
From Fig. 4(a) it is obvious that a signal 
γ(k) exhibiting high SNR=23db does not 
affect our method. On the contrary a signal 

γ(k) with low SNR=0db (signal=noise), as 
demonstrated in Fig. 4(c), can totally 
suppress sidelobes and cancel our proposed 
method, if no additional noise suppression 
technique is applied. 

 (b) (a) (c) 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: γ(k) with SNR 23db inserts a noise amplitude 3% of |γ(k)| max amplitude; with SNR 12db, 
inserts a noise amplitude 10% of |γ(k)| max amplitude and with SNR 0db, 36% of |γ(k)|max 

 
There are several techniques that can be 
used to improve SNR and make our method 
useful for lower SNR values. Then, by 
averaging measurements, we were able to 

obtain very successful results, as reported in 
[15]. These will be presented in detail 
during the Conference. 

 
Figure 5: Value of surface fractal dimension D vs.‘slope calculation’ of the |γ(k)| (3D case). 
 
4. Preliminary Results for the 3D  
Scattering Geometry 
New investigations of our research group 
(still in progress) consider the more realistic 
case of 3D scattering geometry. Preliminary 
3D fractal rough surface characterization 
results are shown at Fig. 5, below, and will 
be presented during the Conference. 
 
5. Conclusion 
In this paper, a novel method is presented 
for the characterization of rough fractal 
surfaces from backscattered radar data of 
sufficient bandwidth [9], [10]. As resulted 

from the plots of the backscattered signal 
magnitude as a function of the wavenumber 
(therefore a ‘spectral method’) of the 
incident EM wave, as the roughness of the 
fractal surface increases, then the observed 
slope between the main lobe and the side 
lobes also increases. Moreover, the fractal 
dimension of the surface can be estimated 
by the average slope of backscattering 
coefficient |γ(k)|. Furthermore, the value of 
the available radar bandwidth is crucial and 
must be sufficiently large, for correct rough 
surface characterization. Finally, we prove 
that our method is useful even in a noisy 
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radar environment, which exhibits γ(k) with 
relatively low SNR. It is only a matter of 

selecting the appropriate averaging number 
of bursts so as to enhance the SNR of γ(k).
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