Regional modelling with flood-duration-frequency approach in the middle Cheliff watershed

Open access


This study describes a statistical approach of watercourses hydrological regimes in flood, taking into account the latter duration d and return period T. The choice of Middle Cheliff watershed as study area is linked to disasters strong return period in the western region of Algeria. The Midlle Cheliff catchment basin, located in northwest Algeria, has particularly experienced severe floods over the last years. In view of the recurrence of these unusual events, the estimation and the predetermination of floods extreme quantiles are a strategic axis for prevention against floods in this region. The a curves are first of all locally determined, directly from a statistical analysis of flow continuously exceeded during a duration d (QCXd) on different durations from available data of the study region. Then, these curves are compared to those obtained by application of different regional models VFS (Vandenesse, Florac and Soyans) in which two indices of the watershed characteristic flood are taken into account, a descriptive duration of the flood dynamics (D) and the instantaneous maximal annual flow of 10 year return period (QIXA10). The final choice of the model is based on verification of certain criteria, such as: Nash and the root mean squared error (RMSE). The closest regional models to the local ones are Florac’s for low duration and return periods, and Vandenesse’s for large return periods, for different durations. These results could be used to build regional Q-d-F curves on ungauged or partially gauged Algerian basins.

Assani A.A. 1997. Recherche d’impacts d’une retenue sur le comportement d’une rivière ardennaise: hydrologie, sédimentologie, morphologie et végétation. Cas du barrage de Bùtgenbach sur la Warche (Belgique) [Search for impacts of a reservoir on the behavior of an Ardennes river: hydrology, sedimentology, morphology and vegetation. Case of the Bütgenbach dam on the Warche (Belgium)]. PhD Thesis. Sciences Géographie, Université de Liège pp. 482.

Bessenasse M., Galea G., Paquier A. 2006. Application du modèle convergent de la méthode hydrologique QdF au bassin versant du Saf Saf (Algérie) [Application of the Convergent Model of the QdF Hydrological Method to the Saf Saf Watershed (Algeria)]. Larhyss Journal. No 05 p. 133–137.

Bessenasse M., Paquier A., Moulla A.S. 2012. A contribution to the numerical modelling of dam reservoir siltation cycles. International Water Technology Journal. Vol. 2. No. 3 p. 236–249.

Bessenasse M., Kettab A., Paquier A. 2004. Modélisation bidimensionnelle du dépôt de sédiments dans un barrage en Algérie [Two-dimensional modeling of sediment deposition in a dam in Algeria]. La Houille Blanche. Vol. 1. p. 31–36.

Bessenasse M., Kettab A., Paquier A., Galea G., Ramez P. 2003. Simulation numérique de la sédimentation dans les retenues de barrages. Cas de la retenue de Zardezas, Algérie [Numerical simulation of sedimentation in dams reservoirs. Case of the detention of Zardezas, Algeria]. Revue des sciences de l'eau. Vol. 16. No. 1 p. 103–122.

Bezak N., Brilly M., Šraj M. 2014. Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrological Sciences Journal. Vol. 59. No. 5 p. 959–977.

Bouchehed H., Mihoubi M.K., Derdous O., Djemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No. 33 p. 39–45.

Brandimarte L., Di Baldassarre G., Bruni G., D’odo-rico P., Montanari A. 2011. Relation between the north-atlantic oscillation and hydroclimatic conditions in mediterranean areas. Water Resources Management. Vol. 25. Iss. 5 p. 1269–1279.

CTGREF, SRAE, DIAME, SH 1980. Synthèse nationale sur les crues des petits bassins versant. Fascicule 2: la méthode SOCOSE. [National summary on floods of small catchment basins. Fascicle 2: the SOCOSE method]. Information technique n°38-2 (juin 1980). Ministère de l'agriculture, Service régionaux de l'aménagement des eaux pp. 39.

CTGREF, SRAE, DIAME, SH 1982. Synthèse nationale sur les crues des petits bassins versant. Fascicule 3: la méthode CRUPEDIX [National summary on floods of small catchment basins. Fascicle 3: the CRUPEDIX method]. Ministère de l'agriculture, Service régionaux de l'aménagement des eaux pp. 36.

Cunderlik J.M., Burn D.H. 2003. Non-stationary pooled flood frequency analysis. Journal of Hydrology. Vol. 276. Iss. 1–4 p. 210–223.

Cunderlik J.M., Jourdain V., Ouarda T.B.M.J., Bobée B. 2007. Local non-stationary flood-duration-frequency modelling. Canadian Water Resources Journal. Vol. 32. No. 1 p. 43–58. DOI 10.4296/cwrj3201043.

Dalrymple T. 1960. Flood frequency analysis. Manual of hydrology: Part 3. Flood-flow techniques. Geological Survey Water-Supply Paper 1543-A. Washington. United States Government Printing Office pp. 80.

Fischer S., Schumann A. 2014. Comparison between classical annual maxima and peak over threshold approach concerning robustness. Discussion paper. Nr. 26 pp. 20.

Galea G., Prudhomme C. 1993. Characterization of large scale variations in river flow behaviour with reference to hydrological macro-regionalization. Proc. 2nd FRIEND Conference. Braunschweig, October 1993. Technishe Universität Braunschweig p. 11–15.

Galea G., Prudhomme C. 1994. Modèles débit-durée-fréquence et conceptualisation d’un hydrogramme de crue synthétique: validation sur le BVRE de Draix [Flow-duration-frequency models and conceptualization of a synthetic flood hydrograph: validation on BVRE de Draix]. Hydrologie. Continentale. Vol. 9. No. 2 p. 139–151.

Galea G., Prudhomme C. 1997. Notions de base et concepts utiles pour la compréhension de la modélisation synthétique des régimes de crue des bassins versants au sens des modèles QdF [Basics and concepts useful for understanding the synthetic modeling of watershed flood regimes in the sense of QdF models]. Revue Science de L'eau. Vol. 10. No. 1 p. 83–101.

Gadek W., Tokarczyk T., Środula A. 2016. Estimation of parametric flood hydrograph determined by means of Strupczewski method in the Vistula and Odra catchments. Journal of Water and Land Development. No. 31 p. 43–51. DOI 10.1515/jwld-2016-0035.

Gilard O. 1998. Les bases techniques de la méthode Inondabilité [The technical basis of the method Inondabilité]. Ed. Cemagref. ISBN 2853624978 pp. 207.

Javelle P. 2001. Caractérisation du régime des crues: le modèle débit-durée-fréquence convergent. Approche locale et régionale [Characterization of the flood regime: the flow-duration-frequency model converge. Local and regional approach]. PhD Thesis. Grenoble. Institut National Polytechnique de Grenoble pp. 267.

Javelle P., Gresillon J.M., Galea G. 1999. Discharge-duration-Frequency curves modeling for floods and scale invariance. Comptes Rendus de l'Académie des Sciences. Sciences de la terre et des planètes. Vol. 329. No. 1 p. 39–44.

Javelle P., Le Clerc S., Sauquet E. 2003. Description des régimes hydrologiques des hautes eaux: nouvelle formulation pour l’analyse en débit-durée-fréquence et applications en ingénierie [Description of hydrological regimes of high water: new formulation for analysis by flow-duration-frequency and engineering applications]. Ingénierie. No 34 p. 3–15.

Javelle P., Ouarda T.B.M.J., Bobee B. 2003. Flood regime definition using the flood-duration-frequency approach: Application to the provinces of Quebec and Ontario, Canada. Hydrological Processes. Vol. 17. No. 18p. 3717–3736.

Javelle P., Ouarda T.B.M., Lang M., Bobee B., Galea G., Gresillon J.M. 2002. Development of regional flood-duration-frequency curves based on the index-flood method. Journal of Hydrology. Vol. 258. Iss. 1–4 p. 249–259.

Ketrouci K. 2014 Application de modèles hydrologies dans l’estimation des crues extrêmes en Algérie [Application of hydrological models in the estimation of extreme floods in Algeria]. PhD Thesis. Oran. Université de sciences et de la technologie Mohamed Boudiaf d'Oran pp. 224.

Ketrouci K., Meddi M., Abdesselam B. 2012. Etude des crues extrêmes en Algérie: cas du bassin-versant de la Tafna [Study of extreme floods in Algeria: case of the Tafna watershed]. Sécheresse. Vol. 23. No. 4 p. 297–305.

Koutsoyiannis D., Kozonis D., Manetas A. 1998. A mathematical framework for studying rainfall intensity-duration-frequency relationships. Journal of Hydro-logy. Vol. 206. Iss. 1–2 p. 118–135. KRIŠČIUKAITIENĖ I., BALEŽENTIS T., GALNAITYTĖ A.,

Namiotko V. 2015. A methodology for flood risk appraisal in Lithuania. Journal of Water and Land Development. No. 25 p. 13–22.

Lang M., Ouarda T.B.M.J., Bobee B. 1999. Towards operational guidelines for over-threshold modeling. Journal of Hydrology. Vol. 225. Iss. 3–4 p. 103–117.

Lang M., Rasmussen P., Oberlin G., Bobee B. 1997. Echantillonnage par valeurs supérieures à un seuil: modélisation des occurrences par la méthode du renouvellement [Sampling by values above a threshold: modeling of occurrences by the renewal method]. Revue des Sciences de l’Eau. Vol. 10. No. 3 p. 279–320.

Ljubenkov I. 2015. Multicriteria flood mitigation in the Imotsko-Bekijsko Polje (Croatia, Bosnia and Herzegovina). Journal of Water and Land Development. No. 26 p. 73–81. DOI 10.1515/jwld-2015-0018.

Mar L., Gineste P., Hamattan M., Tounkara A., Tapsoba L., Javelle P. 2002. la modélisation des débits-durée-fréquence appliquée aux grands basin au Burkina Faso [Flood-duration-frequency modeling applied to big catchments in Burkina Faso]. [4th FRIEND International Conference]. [18–22.03.2002 Le Cap, Afrique du Sud].

Meddi M., Assani A.A., Meddi H. 2010. Temporal variability of annual rainfall in the Macta and Tafna catchments, Northwestern Algeria. Water Resources Management. Vol. 24. No. 14 p. 3817–3833.

Meunier M. 2001. Regional flow – duration – frequency model for the tropical island of Martinique. Journal of Hydrology. Vol. 247. Iss. 1–2 p. 31–53.

Mic R., Galea G., Javelle P. 2002. Floods regionalization of the Cris catchments: application of the converging QdF modeling concept to the Pearson III law. [Conference: 21th Conference of the Danube Countries]. [2–6.09.2002 Bucharest].

Michel C. 1982. Extrapolation par la méthode de GRADEX. Note interne n° KG 03.05.82, Cemagref-Antony. Division hydrologie pp. 3.

Nash J.E., Sutcliffe J.V. 1970. River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of Hydrology. Vol. 10. Iss. 3 p. 282–290. NERC 1975. Estimation of flood volumes over different durations. Flood Studies Report. Vol. 1. Chapt. 5. National Environmental Research Council p. 243–264.

Noor H., Vafakhah M., Taherioun M., Moghadasi M. 2014. Hydrology modelling in Taleghan mountainous watershed using SWAT. Journal of Water and Land Development. No. 20 p. 11–18. DOI 10.2478/jwld-2014-0003.

Nouaceur Z., Laignel B., Turki I. 2013. Changements climatiques au Maghreb: vers des conditions plus humides et plus chaudes sur le littoral algérien [Climate change in the Maghreb: Towards wetter and warmer conditions on the Algerian coastline] [online]. Physio-Géo. Vol. 7. [Access 25.01.2013]. DOI 10.4000/physiogeo.3686. Available at:

Oberlin G., Ben Mansour H., Ortiz R. 1989. Generalization and standardization for three types of flow--duration-frequency curves in flood regime description and transfer. In: FRIENDS in Hydrology. Proceedings of 1st FRIEND symposium. Bolkesjö, Norvège, AISH Pub. No 187 p. 85–96.

Renima M., Remaoun M., Sadeuk Ben Abbes A. 2013. Impact du changement climatique sur les ressources en eau et les extrêmes hydrologiques dans le bassin du moyen Chélif [Impact of climate change on water resources and hydrological extremes in the middle Chélif basin] [online]. SIHE. Ouargla, Algérie, 5–7.112013. [Access 25.06.2017]. Available at:

Renima M., Remaoun M., Sadeuk Ben Abbes A. 2014. Modélisation du régime des crues par l’approche Q-d-F convergent (Débit-durée-Fréquence) dans le bassin versant du moyen Chélif [Flood regime Modelling by the convergent Q-d-F approach (Flow-duration-Frequency) in the Middle Chélif Watershed]. Arabian Journal of Earth Sciences. Vol. 1. Iss. 1 p. 112–112.

Sadeuk Ben Abbes A., Meddi M. 2016. Study of propagation and floods routing in north-western region of Algeria. International Journal of Hydrology Science and Technology. Vol. 6. No. 2 p. 118–142.

Sauquet E., Galea G., Bessenasse M. 2004. Caractérisation du régime des hautes eaux en debit-durée-fréquence. Application au contexte Algerian [Characterization of the high-flow regime in flow-duration-frequency. Application to the Algerian context]. La Houille. Blanche Vol. 5 p. 80–85.

Singh R.D., Mishra S.K., Chowdhary H. 2001. Regional flow-duration models for large number of ungauged Himalayan catchments for planning microhydro projects. Journal of Hydrologic Engineering. Vol. 6. No. 4 p. 310–316.

Taibi S., Meddi M., Mahé G., Assani A. 2015 Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall. Theoretical and Applied Climatology. Vol. 127. Iss. 1–2 p. 241–257. DOI 10.1007/s00704-015-1626-4.

Wałęga A. 2016. The importance of calibration parameters on the accuracy of the floods description in the Snyder’s model. Journal of Water and Land Development. No. 28 p. 19–25. DOI 10.1515/jwld-2016-0002.

Wojas W., Tyszewski S. 2013. Some examples comparing static and dynamic network approaches in water resources allocation models for the rivers of high instability of flows. Journal of Water and Land Development. No. 18 p. 21–27.

Yahiaoui A., Touaïbia B., Bouvier C., Dechemi N. 2011. Modélisation du régime de crue en Débit – durée – Fréquence du bassin de l’oued Mekerra dans l’ouest Algérien [Watershed flood regime modelling with the Flow-duration-Frequency approach as applied to the oued Mekerra catchment in western Algeria]. Revue des sciences de l'eau Vol. 24. No. 2 p. 103–115.

Journal of Water and Land Development

The Journal of Polish Academy of Sciences Committee on Agronomic Sciences, Section of Land Reclamation and Environmental Engineering in Agriculture and Institute of Technology and Life Sciences in Falenty

Journal Information

CiteScore 2018: 1.55

SCImago Journal Rank (SJR) 2018: 0.401
Source Normalized Impact per Paper (SNIP) 2018: 1.389

Ministry of Science and Higher Education: 14 points


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 483 143 8
PDF Downloads 281 197 18