Significance of cyclooxygenase-2 in oncogenesis

Open access

Abstract

The cyclooxygenase-2 (COX-2) enzyme catalyses the first stage of biosynthesis of prostanoids, proteins that are implicated in various physiological and pathological processes in humans and animals. The expression of COX-2 increases significantly during pathological processes accompanied by inflammation, pain and fever. Overexpression of COX-2 was determined in tumour tissues, which suggests that this enzyme participates in oncogenesis. In this paper the topics discussed are mechanisms regulating COX-2 expression, COX isoforms, their role in the body and the oncogenic mechanisms triggered by the overexpression of COX-2, including inhibition of apoptosis, intensification of neoangiogenesis, increased metastatic capacity, and weakening of the immune system. The significance of and the mechanisms by which COX-2 participates in oncogenesis have been studied intensively in recent years. The results are highly promising, and they expand our understanding of the complex processes and changes at the molecular, cellular and tissue level that promote oncogenesis and cancer progression. Notwithstanding the knowledge already gleaned, many processes and mechanisms have not yet been elucidated in human medicine and, in particular, in veterinary medicine. Further research is required to develop effective tumour diagnostic methods and treatment procedures for humans and animals.

1. Adams J.M., Cory S.: Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 2007, 19, 488–496.

2. Arenas C., Peña L., Granados-Soler J.L., Pérez-Alenza M.D.: Adjuvant therapy for highly malignant canine mammary tumours: Cox-2 inhibitor versus chemotherapy: a case-control prospective study. Vet Rec 2016, 179, 125.

3. Baeriswyl V., Christofori G.: The angiogenic switch in carcinogenesis. Sem Cancer Biol 2009, 19, 329–337.

4. Basu G.D., Tinder T.L., Bradley J.M., Tu T., Hattrup C.L., Pockaj B.A., Mukherjee P.: Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J Immunol 2006, 177, 2391–2402.

5. Becht E., Aurélien de Reyniès A., Wolf H., Fridman W.H.: Integrating tumor microenvironment with cancer molecular classifications. Genome Med 2015, 7, 115.

6. Bosman F.T., Visser B.C., van Oeveren J.: Apoptosis: pathophysiology of programmed cell death. Pathol Res Pract 1996, 192, 676–683.

7. Burdan F., Chałas A., Szumiło J.: Cyclooxygenase and prostanoids – biological implications. Post Hig Med Dośw 2006, 60, 129–141.

8. Cancedda S., Sabattini S., Bettini G., Leone V.F., Laganga P., Rossi F., Terragni R., Gnudi G., Vignoli M.: Combination of radiation therapy and firocoxib for the treatment of canine nasal carcinoma. Vet Radiol Ultrasound 2015, 56, 335–343.

9. Carmeliet P.: Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000, 63, 89–95.

10. Carvalho M.I., Pires I., Prada J., Ferreira A.F., Queiroga F.L.: Positive interplay between CD3+ T-lymphocytes and concurrent COX-2/EGFR expression in canine malignant mammary tumors. Anticancer Res 2015, 35, 2915–2920.

11. Carvalho S., Stoll A.L., Priestnall S.L., Suarez-Bonnet A., Rassnick K., Lynch S., Schoepper I., Romanelli G., Buracco P., Atherton M., de Merlo E.M., Lara-Garcia A..: Retrospective evaluation of COX-2 expression, histological and clinical factors as prognostic indicators in dogs with renal cell carcinomas undergoing nephrectomy. Vet Comp Oncol 2017, 15, 1280–1294.

12. Cetin M., Buyukberber S., Demir M., Sari I., Sari I., Deniz K., Eser B., Altuntaz F., Camci C., Ozturk A., Turgut B., Vural O., Unal A.: Overexpression of cyclooxygenase-2 in multiple myeloma: association with reduced survival. Am J Hematol 2005, 80, 169–173.

13. Chandrasekharan N.V., Dai H., Roos K.L.T., Evanson N.K., Tomsik J., Elton T.S., Simmons D.L.: COX-3, a cyclooxygenase -1 variant inhibited by acetaminophen and other analgesic/ antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002, 99, 13926–13931.

14. Chandrasekharan N.V., Simmons D.L.: The cyclooxygenases. Genome Biol 2004, 5, 241.

15. Chen S.F., Liou J.Y., Huang T.Y., Lin Y.S., Yeh A.L., Tam K., Tsai T.H., Wu K.K., Shyne S.K.: Caveolin-1 facilitates cyclooxygenase-2 protein degradation. J Cell Biochem 2010, 109, 356–362.

16. Cheng H.F., Harris R.C.: Renal effects of non-steroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr Pharm Des 2005, 11, 1795–1804.

17. Chung A.S, Lee J., Ferrara N.: Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 2010, 10, 505–514.

18. Cok S.J., Morrison A.R.: The 3’-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J Biol Chem 2001, 76, 23179–23185.

19. Dimmeler S., Fleming I., Fisslthaler B., Hermann C., Busse R., Zeiher A.M.: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999, 399, 601–605.

20. Dogne J.M., Supuran C.T., Pratico D.: Adverse cardiovascular effects of the coxibs. J Med Chem 2005, 48, 2251–2257.

21. Dohadwala M., Luo J., Zhu L., Lin Y., Dougherty G.J., Sharma S., Huang M., Pold M., Batra R.K., Dubinett S.M.: Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. J Biol Chem 2001, 276, 20809–20812.

22. Dohadwala M., Yang S.C., Luo J., Sharma S., Batra R.K., Huang M., Lin Y., Goodglick L., Krysan K., Fishbein M.C., Hong L., Lai C., Cameron R.B., Gemmill R.M., Drabkin H.A., Dubinett S.M.: Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and Snail in non-small cell lung cancer. Cancer Res 2006, 66, 5338–5345.

23. Dome B., Hendrix M.J., Paku S., Tovari J., Timar J.: Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol 2007, 170, 1–15.

24. Doré M.: Cyclooxygenase-2 expression in animal cancers. Vet Pathol 2011, 48, 254–265.

25. Eberhart C.E., Coffey R.J., Radhika A., Giardiello F.M., Ferrenbach S., DuBois R.N.: Upregulation of cyclooxygenase-2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994, 107, 1183–1188.

26. Ebos J.M., Kerbel R.S.: Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 2011, 8, 210–221.

27. Edelman M.J., Watson D., Wang X., Morrison C., Kratzke R.A., Jewell S., Hodgson L., Mauer A.M., Gajra A., Masters G.A., Bedor M., Vokes E.E., Green M.J.: Eicosanoid modulation in advanced lung cancer: cyclooxygenase-2 expression is a positive predictive factor for celecoxib + chemotherapy - Cancer and Leukemia Group B Trial 30203. J Clin Oncol 2008, 26, 848–855.

28. Eliceiri B.P., Cheresh D.A.: The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 1999, 103, 1227–1230.

29. Elmore S.: Apoptosis: a review of programmed cell death. Toxicol Pathol 2007, 35, 495–516.

30. Folkman J.: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995, 1, 27–31.

31. Fridman W.H., Pagès F., Sautès-Fridman C., Galon J.: The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012, 12, 298–306.

32. Fux R., Schwab M., Thon K.P., Gleiter C.H., Fritz P.: Cyclooxygenase-2 expression in human colorectal cancer is unrelated to overall patient survival. Clin Cancer Res 2005, 11, 4754–4760.

33. Gerl R., Vaux D.L.: Apoptosis in the development and treatment of cancer. Carcinogenesis 2005, 26, 263–270.

34. Giles F.J., Kantarjian H.M., Bekele B.N., Cortes J.E., Federl S., Thomas D.A., Manshuri T., Rogers A., Keating M.J., Talpaz M., O’Brien S., Albitar M.: Bone marrow cyclooxygenase-2 levels are elevated in chronic-phase chronic myeloid leukaemia and are associated with reduced survival. Br J Haematol 2002, 119, 38–45.

35. Gos M., Miłoszewska J., Przybyszewska M.: Epithelialmesenchymal transition in cancer progression. Post Biochem 2009, 55, 121–128.

36. Greenhough A., Smartt H.J.M., Moore A.E., Roberts H.R., Williams A.C., Paraskeva C., Kaidi A.: The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009, 30, 377–386.

37. Gregório H., Raposo T., Queiroga F.L., Pires I., Pena L., Prada J.: High COX-2 expression in canine mast cell tumours is associated with proliferation, angiogenesis and decreased overall survival. Vet Comp Oncol 2017, 15, 1382–1392.

38. Gregório H., Raposo T.P., Queiroga F.L., Prada J., Pires I.: Investigating associations of cyclooxygenase-2 expression with angiogenesis, proliferation, macrophage and T-lymphocyte infiltration in canine melanocytic tumours. Melanoma Res 2016, 26, 338–347.

39. Grimes K.R., Warren G.W., Fang F., Xu Y., St Clair W.H.: Cyclooxygenase-2 inhibitor, nimesulide, improves radiation treatment against non-small cell lung cancer both in vitro and in vivo. Oncol Rep 2006, 16, 771–776.

40. Harizi H., Juzan M., Pitard V., Moreau J.F., Gualde N.: Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 2002, 168, 2255–2263.

41. Hinz B., Brune K.: Cyclooxygenase-2 - 10 years later. J Pharm Exp Therap 2001, 300, 367–375.

42. Holmgaard R.B., Zamarin D., Gasmi B., Munn D.H., Allison J.P., Merghoub T., Wolchok J.D.: Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep 2015, 13, 412–424.

43. Hsu A.L., Ching T.T., Wang D.S., Song X., Rangnekar V.M., Chen C.S.: The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000, 275, 11397–11403.

44. Huang M., Stolina M., Sharma S., Mao J.T., Zhu L., Miller P.W., Wollman J., Herschman H., Dubinett S.M.: Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 1998, 58, 1208–1216.

45. Ishikawa T., Herschman H.R.: Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis 2010, 31, 729–736.

46. Iturriaga M.P., Oaredes R., Arias J.I., Torres C.G.: Meloxicam decreases the migration and invasion of CF41.Mg canine mammary carcinoma cells. Oncol Lett 2017, 14, 2198–2206.

47. Jackson L.M., Wu K.C., Mahida Y.R., Jenkins D., Hawkey C.J.: Cyclooxygenase (COX) 1 and 2 in normal, inflamed, and ulcerated human gastric mucosa. Gut 2000, 47, 762–770.

48. Jain S., Chakraborty G., Raja R., Kale S., Kundu G.C.: Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Res 2008, 68, 7750–7759.

49. Kim D., Kim S., Koh H., Yoon S.O., Chung A.S., Cho K.S., Chung J.: Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 2001, 15, 1953–1962.

50. Komhoff M., Grone H.J., Klein T., Seyberth H.W., Nursing R.M.: Localization of cyclooxygenase-1 and -2 in adult and fetal human kidney: implication for renal function. Am J Physiol 1997, 272, F460–F468.

51. Kozłowski W., Szacikowska E.: Manysided herceptin action in HER2 overexpressing cells. Współcz Onkol 2001, 5, 254–259.

52. Krajewska W.M, Masłowska I.: Caveolin, caveolae and neoplastic transformation. Post Biol Kom 31, 2004, 22, 85–99.

53. Krysan K., Dalwadi H., Sharma S., Pold M., Dubinett S.: Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer. Cancer Res 2004, 64, 6359–6362.

54. Krześlak A.: Akt kinase: a key regulator of metabolism and progression of tumors. Post Hig Med Dośw 2010, 64, 490–503.

55. Lall S.: Activating apoptosis. Nat Struct Mol Biol 2009, 16, 614.

56. Lazarus M., Eguchi N., Matsumoto S., Nagata N., Yano T., Killian G.J., Urade Y.: Species-specific expression of microsomal prostaglandin E synthase-1 and cyclooxygenases in male monkey reproductive organs. Prostag Leukotr Ess 2004, 71, 233–240.

57. Lee J.W., Bae S.H., Jeong J.W., Kim S.H., Kim K.W.: Hypoxia-inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp Mol Med 2004, 36, 1–12.

58. Ling F.C., Baldus S.E., Khochfar J., Xi H., Neiss S., Brabender J., Metzger R., Drebber U., Dienes H.P., Bollschweiler E., Hoelscher A.H., Schneider P.M.: Association of COX-2 expression with corresponding active and chronic inflammatory reactions in Barrett’s metaplasia and progression to cancer. Histopathology 2007, 50, 203–209.

59. Mantovani A., Allavena P., Sica A., Balkwill F.: Cancer-related inflammation. Nature 2008, 454, 436–444.

60. Millanta F., Asproni P., Canale A., Citi S., Poli A.: COX-2, mPGES-1 and EP2 receptor immunohistochemical expression in canine and feline malignant mammary tumours. Vet Comp Oncol 2016, 14, 270–280.

61. Misra S., Obeid L.M., Hannun Y.A., Minamisawa S., Berger F.G., Markwald R.R., Toole B.P., Ghatak S.: Hyaluronan constitutively regulates activation of COX-2-mediated cell survival activity in intestinal epithelial and colon carcinoma cells. J Biol Chem 2008, 283, 14335–14344.

62. Mrena J., Wiksten J.-P., Kokkola A., Nordling S., Ristimaki A., Haglund C.: COX-2 is associated with proliferation and apoptosis markers and serves as an independent prognostic factor in gastric cancer. Tumour Biol 2010, 31, 1–7.

63. Mukherjee P., Basu G.D., Tinder T.L., Subramani D.B., Bradley J.M., Arefayene M., Skaar T., De Petris G.: Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol 2009, 182, 216–224.

64. Nakata E., Mason K.A., Hunter N., Husain A., Raju U., Liao Z., Ang K.K., Milas L.: Potentiation of tumor response to radiation or chemoradiation by selective cyclooxygenase-2 enzyme inhibitors. Int J Radiat Oncol Biol Phys 2004, 58, 369–375.

65. O’Neill G.P., Ford-Hutchinson A.W.: Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett 1993, 330, 156–160.

66. Ogino S., Kirkner G.J., Nosho K., Irahara N., Kure S., Shima K., Hazra A., Chan A.T., Dehari R., Giovannucci E.L., Fuchs C.S.: Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin Cancer Res 2008, 14, 8221–8227.

67. Ohsawa M., Fukushima H., Ikura Y., Inoue T., Shirai N., Sugama Y., Suekane T., Kitabayashi C., Nakamae H., Hino M., Ueda M.: Expression of cyclooxygenase-2 in Hodgkin’s lymphoma: its role in cell proliferation and angiogenesis. Leuk Lymphoma 2006, 47, 1863–1871.

68. Oshima M., Dinchuk J.E., Kargman S.L., Oshima H., Hancock B., Kwong E., Trzaskos J.M., Evans J.F., Taketo M.M.: Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996, 87, 803–809.

69. Pasinetti G.M.: Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical intervention. J Neurosci Res 1998, 54, 1–6.

70. Remark R., Alifano M., Cremer I., Lupo A., Dieu-Nosjean M.C., Riquet M., Crozet L., Ouakrim H., Goc J., Cazes A., Fléjou J.F., Gibault L., Verkarre V., Régnard J.F., Pagès O.N., Oudard S., Mlecnik B., Sautès-Fridman C., Fridman W.H., Damotte D.: Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin Cancer Res 2013, 19, 4079–4091.

71. Richardsen E., Uglehus R.D., Due J., Busch C., Busund L.-T.: COX-2 is overexpressed in primary prostate cancer with metastatic potential and may predict survival. A comparison study between COX-2, TGF-beta, IL-10 and Ki67. Cancer Epidemiol 2010, 34, 316–322.

72. Riedl K., Krysan K., Pold M., Dalwadi H., Heuze-Vourc’h N., Dohadwala M., Liu M., Cui X., Figlin R., Mao J.T., Strieter R., Sharma S., Dubinett S.M.: Multifaceted roles of cyclooxygenase-2 in lung cancer. Drug Resist Updat 2004, 7, 169–184.

73. Rizzo M.T.: Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 2011, 412, 671–687.

74. Salvado M.D., Alfranca A., Haeggstrom J.Z., Redondo J.M.: Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2. Trends Mol Med 2012, 18, 233–243.

75. Schonbeck U., Sukhova G.K., Graber P., Coulter S., Libby P.: Augmented expression of cyclooxygenase-2 in human artherosclerotic lesions. Am J Pathol 1999, 155, 1281–1291.

76. Sinha P., Clements V.K., Fulton A.M., Ostrand-Rosenberg S.: Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 2007, 67, 4507–4513.

77. Sitarz R., Leguit R.J., de Leng W.W., Morsink F.H., Polkowski W.P., Maciejewski R., Offerhaus G.J., Milne A.N.: Cyclooxygenase-2 mediated regulation of E-cadherin occurs in conventional but not early-onset gastric cancer cell lines. Cell Oncol 2009, 31, 475–485.

78. Slater D., Berger L., Newton R., Moore G., Bennett P.: The relative abundance of type 1 to type 2 cyclooxygenase mRNA in human amnion at term. Biochem Biophys Res Commun 1994, 198, 304–308.

79. Sobczyńska-Rak A., Silmanowicz P., Polkowska I.: Tumor angiogenesis – factors influencing the development of a tumor vascular network and assessment of neoangiogenesis in histopathological samples. Med Weter 2016, 72, 542–548.

80. Solinas G., Marchesi F., Garlanda C., Mantovani A., Allavena P.: Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev 2010, 29, 243–248.

81. Somiari S.B., Shriver C.D., Heckman C., Olsen C., Hu H., Jordan R., Arciero C., Russell S., Garguilo G., Hooke J., Somiari R.I.: Plasma concentration and activity of matrix metalloproteinase 2 and 9 in patients with breast disease, breast cancer and at risk of developing breast cancer. Cancer Lett 2006, 233, 98–107.

82. Soslow R.A., Dannenberg A.J., Rush D., Woerner B.M., Khan K.N., Masferrer J., Koki A.T.: COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 2000, 89, 2637–2645.

83. Stolina M., Sharma S., Lin Y., Dohadwala M., Gardner B., Luo J., Zhu L., Kronenberg M., Miller P.W., Portanova J., Lee J.C., Dubinett S.M.: Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 2000, 164, 361–370.

84. Svensson C.I., Yaksh T.L.: The spinal phospholipasecyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol 2002, 42, 553–583.

85. Swidzińska E., Naumnik W., Chyczewska E.: Angiogenesis and neoangiogenesis – the role in lung cancer and other tumors. Pneumonol Alergol Pol 2006, 74, 414–420.

86. Szala S., Jarosz M.: Tumor blood vessels. Post Hig Med Dośw 2011, 65, 437–446.

87. Tamura D., Saito T., Murata K., Kawashima M., Asano R.: Celecoxib exerts antitumor effects in canine mammary tumor cells via COX-2-independent mechanisms. Int J Oncol 2015, 46, 1393–1404.

88. Thamm D.H., Ehrhart E.J. III, Charles J.B., Elce Y.A.: Cyclooxygenase-2 expression in equine tumors. Vet Pathol 2008, 45, 825–828.

89. Tsatsanis C., Androulidaki A., Venihaki M., Margioris A.N.: Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 2006, 38, 1654–1661.

90. Vahidi R., Safi S., Farsinejad A., Panahi N.: Citrate and celecoxib induce apoptosis and decrease necrosis in synergistic manner in canine mammary tumor cells. Cell Mol Biol (Noisy-le-grand). 2015, 61, 22–28.

91. Veikkola T., Karkkainen M., Classon-Welsh L., Alitalo K.: Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 2000, 60, 203–212.

92. Wada M., Saunders T.L., Morrow J., Milne G.L., Walker K.P., Dey S.K., Brock T.G., Opp M.R., Aronoff D.M., Smith W.L.: Two pathways for cyclooxygenase-2 protein degradation in vivo. J Biol Chem 2009, 284, 30742–30753.

93. Wideł M.S., Wideł M.: Mechanisms of metastasis and molecular markers of malignant tumor progression. I. Colorectal cancer. Post Hig Med Dośw 2006, 60, 453–470.

94. Williams C.S., Mann M., DuBois R.N.: The role of cyclooxygenases in inflammation, cancer and development. Oncogene 1999, 18, 7908–7916.

95. Wong R.S.: Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 2011, 30, 87.

96. Yamagata K., Andreasson K.I., Kaufmann W.E., Barnes C.A., Worley P.F.: Expression of mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 1993, 11, 371–386.

97. Yuan A., Yu C.J., Shun C.T., Luh K.T., Kuo S.H., Lee Y.C., Yang P.C.: Total cyclooxygenase-2 mRNA levels correlate with vascular endothelial growth factor mRNA levels, tumor angiogenesis and prognosis in non-small cell lung cancer patients. Int J Cancer 2005, 115, 545–555.

98. Zeng Q., McCauley L.K., Wang C.Y.: Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2. Implication in head and neck squamous cell carcinoma progression. J Biol Chem 2002, 277, 50137–50142.

99. Zha S., Yegnasubramanian V., Nelson W.G., Isaacs W.B., De Marzo A.M.: Cyclooxygenases in cancer: progress and perspective. Cancer Lett 2004, 215, 1–20.

Journal of Veterinary Research

formerly Bulletin of the Veterinary Institute in Pulawy

Journal Information


IMPACT FACTOR J Vet Res 2018: 0,829
5-year IMPACT FACTOR: 0,938

CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.291
Source Normalized Impact per Paper (SNIP) 2018: 0.501

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 53
PDF Downloads 32 32 32